THE EHR LANGUAGE GARDEN Leveraging Variability in Health Documentation

Denis Newman-Griffis NIH Clinical Center / University of Pittsburgh

National Institutes of Health

Nursing

Pharmacy

Discharge Summaries

Research \rightarrow Practice

Research \rightarrow Practice

Sublanguage: the secret sauce

ERH data variability at scale

Content – what do the records say?

Form – how do they say it?

Structure – what are the pieces?

Context: SSA disability programs

- ✓ National data
- ✓ All providers/EHRs
- ✓ Unreliable metadata

"Defining" disability

Medical conditions

- High mortality conditions
- Medical listings (business rules)

Functional limitations

- Ability to perform workrelated activities
- Substantial Gainful Employment

Need NLP that can handle both!

Planting the garden: findings

Content – Rehabilitation medicine as a sublanguage

Form

Structure

Health strategies – Rehabilitation

<u>Goal</u>: Restore/optimize function

- Adapt to health condition (e.g., chronic or incurable)
- Interactions with world

Under-studied domain

Health strategies – Curative

Goal: Cure health conditions

- Diagnosis
- Treatment
- Physiological/internal

Most of clinical NLP!

Multi-institution data

BTRIS

- 155K records
- Research patients
- 130 doctypes

D The Ohio State University

OSUMC

- 418K records
- Chronic diseases
- 43 doctypes

MIMIC-III

- 2M records
- ICU admissions
- 25 doctypes*

Data classifications

Diagnostic – most concerned with diagnosis and treatment

Functioning – most concerned with functioning status

Data classifications

Medical – curative documents from "standard" specialties

Therapy – therapeutic specialties (PT, OT, RT, etc.)

Ancillary – non-physiological (mental health, social work)

Other – administrative documents

Data classifications

PT – physical therapy
OT – occupational therapy
RT – recreational therapy
SLP – speech/language
 pathology
Psych – psychological/iatric
Neuro – neurological
SW – social work
General – catchall bucket

Rehab medicine vocabulary is distinct

17

BL = Variance within document types

- D = Variance between doctypes in Diagnostic
- D/F = Variance between Diagnostic doctypes and Functioning doctypes

Rehab medicine vocabulary is distinct

Significant differences across institutions

Significant differences across institutions

Different structure of information

21

i2b2

Ejection fraction: 90% Lab creatinine: 3 mg/dL

There has been removal of [a swan-ganz catheter]_{Treatment} and placement of [a right internal jugular vascular catheter]_{Treatment}.

Rehab data

Pt 45 yr old tech worker, sedentary activity but hikes on weekends.

[Ambulation: 4]_{Mobility} Observations: Pt is weight bearing: [she ambulates independently w/o use of assistive device]_{Mobility}. Limited to very brief examination.

Planting the garden: findings

Content

Form – Differences in clinical concept usage

Structure

D N-G, E Fosler-Lussier. "Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings." LOUHI, 2019.

Characterizing document types

Document/section structural patterns inform meaning

- Field names vs observations
- □Temporality (future/past/recurrent)
- Perceived importance (e.g. Chief Complaint)

Document types change priors for disambiguation "Depression" in Psychiatric Consult vs GE Exam

> Discharge summaries != Nursing notes

Conceptual vs lexical analysis

24

Prior work used lexical content to describe clinical sublanguages Feldman et al, 2016
Grön et al, 2019

Concepts (symptoms, diseases, procedures, etc) are stock in trade of clinical language Multiple surface forms Ambiguity ("Cold")

Learning concept embeddings: JET

- Train word/term/concept embeddings jointly
- Distant supervision using known terminology
- Noisy, but good quality

D N-G et al. "Jointly embedding entities and text." Repl4NLP, 2018.

Measuring concept usage similarity

- Measured by overlap of nearest neighbor sets
- Similarity metric in [0,1]
- Compare inter-type overlaps to intra-type overlaps

Set A	Set B
Cucumber	Squash
Squash	Pumpkin
Beans	Pasta
Green	Beans
Pasta	Cheese

Neighbors of **Onion**

Inter-type similarity is significantly lower than intra-type

Case Management	0.75	0.01	0.01	0.00	0.00	0.00	0.01
Discharge Summary	0.01	0.67	0.24	0.32	0.00	0.34	0.33
Echo	0.01	0.24	0.65	0.13	0.00	0.36	0.40
Nursing/Other	0.00	0.32	0.13	0.60	0.00	0.27	0.31
Nutrition	0.00	0.00	0.00	0.00	0.73	0.01	0.00
Physician	0.00	0.34	0.36	0.27	0.01	0.57	0.26
Radiology	0.01	0.33	0.40	0.31	0.00	0.26	0.63
	Case Management	Discharge Summary	Echo	Nursing/Other	Nutrition	Physician	Radiology

28

Nearest neighbors: Diabetes Mellitus (C0011849)

Discharge Summary	Nursing/Other	Radiology
Diabetes (C0011847)	Gestational Diabetes (C0085207)	Poorly controlled (C3853134)
Type 2 (C0441730)	A2 immunologic symbol (C1443036)	Insulin (C0021641)
Type 1 (C0441729)	Diabetes Mellitus, Insulin- Dependent (C0011854)	Diabetes Mellitus, Insulin- Dependent (C0011854)
Gestational Diabetes (C0085207)	Factor V (C0015498)	Diabetes Mellitus, Non- Insulin-Dependent (C0011860)
Diabetes Mellitus, Insulin- Dependent (C0011854)	A1 immunologic symbol (C1443035)	Stage level 5 (C0441777)

Strings: "diabetes mellitus", "diabetes mellitus dm"

Nearest neighbors: Mental state (C0278060)

Discharge Summary	Echo	Radiology
Coherent (C4068804)	Donor [LOINC] (C3263710)	Mental status changes (C0856054)
Confusion (C0009676)	Donor person (C0013018)	Abnormal mental state (C0278061)
Respiratory status [LOINC] (C2598168)	Respiratory arrest (C0162297)	Level of consciousness (C0234425)
Respiratory status (C1998827)	Organ donor [LOINC] (C1716004)	Level of consciousness [LOINC] (C4050479)
Abnormal mental state (C0278061)	Swallowing (C4281783)	Mississippi (C0026221)

Strings: "mental status", "mental state"

Embeddings pick up template patterns

Mental status in Echo notes

PATIENT/TEST INFORMATION Indication: Pt presents with reduced <u>mental status</u>

PATIENT/TEST INFORMATION Indication: Pt presents in vegetative state, consider for organ donation

Planting the garden: findings

Content

Form

Structure – Structural text features capture format and content variation

Work by Bart Desmet, Guy Divita, and Aya Zirikly

Sources of variability in SSA data

Document Source

SSA Consultative Exams, CCDA documents from EHR, VA data, scanned notes

Content Types

SOAP notes, radiology reports, labs, surveys

Formatted Structure

Headers/footers, columns, section names, checkboxes

Classify early, process better

- 70K documents
- Disability claimants from 5 states
- Unreliable doctypes

Page-level Features

- Number of Characters, Words, Lines, Sentences
- Number of Punctuation, Delimiters
- Number of Section Names, Section Zones, Nested Sections
- Number of Slot Values, Slot Names, Slot Value Values
- □ Number of Check Boxes (this wasn't actually working as it turns out)
- Number of Tables
- Number of Lists, List Elements
- Number of Questions
- "Text Tiling" Vector fingerprint (2 numbers)

Related Work: Text Tiling

Marti Hearst (1994): Using word sequences to build a signal to indicate topic/paragraph shifts.

Figure 6

Results of the block similarity algorithm on the *Stargazer* text with *k* set to 10 and the loose boundary cutoff limit. Both the smoothed and unsmoothed plot are shown. Internal numbers indicate paragraph numbers, x-axis indicates token-sequence gap number, y-axis indicates similarity between blocks centered at the corresponding token-sequence gap. Vertical lines indicate boundaries chosen by the algorithm; for example, the leftmost vertical line represents a boundary after paragraph 3. Note how these align with the boundary gaps of Figure 5 above.

Marti A. Hearst, Multi-Paragraph Segmentation of Expository Text. Proceedings of the 32nd Meeting of the Association for Computational Linguistics, Los Cruces, NM, June, 1994.

Page-level PCA

Input

Structural features for each page

Output

- Orthogonal transform into a set of principal components
- Dimensionality reduction and variance identification

PCA "Angelfish" Plot

PCA "Angelfish" Plot

Density estimation (dot=100pgs)

Density estimation (dot=500pgs)

Density estimation (dot=1000pgs)

Density estimation (dot=3000pgs)

Density estimation (dot=5000pgs)

Observations from the Density Plot

Topic analysis \rightarrow semantic correlations

Торіс	# non-relevant pages	#relevant pages
Social/family history for mental disorder	11358	975
mental status evaluation -risk of suicide	14239	122
Mental disorder symptoms and treatment history	9900	3613
Impression of mental disorder	15500	100
Lab test results [Topic 6]	11959	2406

Planting the garden: findings

EpiBio: Heterogeneous SSA data

 Geographic variation in mental health-related documentation

Stigma

Lack of details / re-coding

 \Box Format \rightarrow structure

Sectionizing

Semi-structured forms

National Institutes of Health Clinical Center

Pitt: EHR language and health equity

- Documentation differences for patients of different races
 - What is recorded?
 - How is it recorded?
- Integrating patient-generated language with clinical observations
 Self-reported functional status

Ambiguity in health language

VA: Knowledge exchange

- Challenges shared by national health systems
 - Geographic and institutional variation
 - Large portion of SSA medical evidence comes from VA
- Cerner transition
 - Changes in documentation practice
 - Effect on NLP pipelines

U.S. Department of Veterans Affairs

Acknowledgments

- Aya Zirikly (NIH)
- Guy Divita (NIH)
- Bart Desmet (NIH)
- Jona Camacho Maldonado (NIH)
- Pei-Shu Ho (NIH)
- Beth Rasch (NIH)
- Eric Fosler-Lussier (Ohio State)
- Albert Lai (WashU)

Funding support from NIH Intramural Research Program and the US Social Security Administration.

<u>denis.griffis@nih.gov</u>

dnewmangriffis@pitt.edu