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How the heck do we 
get a computer to 
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Rule-Based NLP

● Finite State Automata

1 2 3 4

b a a

a

!

Example from “Speech and Language Processing”, Jurafsky and Martin, 2009
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Statistical NLP

● Neural Networks (NNs)

Word count

Average token length

“Knave” occurred?

Ratio of /[ATCG]/

Shakespeare

Biomedical abstract

News article

Input Hidden 
layer(s)

Output



Statistical NLP

● Other methods: matrix factorization, logistic regression, etc.

[ ] [][ ]=...
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Statistical NLPRule-Based NLP

Lots of current work 
uses both approaches 

in joint systems!
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Human effort required

Classification power

Unsupervised Semi-supervised Supervised
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So what do you do with all this stuff?

? ? ?
??

?
??

?



Lots of things!
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Parsing / Tagging

Picard ordered tea.

NNP VBD NN

NSubj Root DObj

Part of Speech

Dependency
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Information Extraction

“Abraham Lincoln was born 
February 12, 1809, in Hardin 
County, Kentucky...”

ID Month Day Year

Honest Abe February 12 1809

ID County State Country

Big Lincoln Hardin Kentucky 'Murica

Birth Dates

Birth Locations
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Information Retrieval

ATTACCGCAGAT
1 | CATTACCGGAGATCCTA
2 | CCCATTACGGCCGCAGATAA
3 | ATTACCGAA

Who played Malcolm 
Reynolds?

Who played Real Madrid 
last week?

Web 
Search

Bioinformatics

Question 
Answering

Nathan Fillion Barcelona; final score 3-2
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sausage. Salami strip steak sirloin cow. 
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bacon pork!}



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Automatic summarization



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Automatic summarization

*Not actual tweets



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Automatic summarization

*Not actual tweets



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Automatic summarization

*Not actual tweets



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Discourse analysis

Automatic summarization

Sentiment analysis



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Discourse analysis

Automatic summarization

Sentiment analysis
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Automatic summarization

Sentiment analysis

Discourse analysis

Automatic summarization

Sentiment analysis

U: I want Chinese food.

S: Here are 473 Chinese places.

U: How about cheap ones on the 
south side?

S: Here is 1 restaurant.

U: Eh, let's do Thai food instead.

S: I'm sorry, Dave, I can't let you 
do that.

Turn Type Location Cheap?

1 Chinese ??? ???

2 Chinese South Yes

3 Thai South Yes

User Goals
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...who I met at a 
Trek convention.

As for Star Wars...maytheforcebewithyou

May the force be with you
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[Bugs Bunny]
Person

 bought 50% of 

[Acme Corp.]
Company

 in [2004]
Year

.
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And many more!
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NLP Toolkits
Toolkit Language Website

Apache OpenNLP Java https://opennlp.apache.org 

General-purpose NLP toolkit; tends to use older models, but under Apache license.

Natural Language Toolkit (NLTK) Python http://www.nltk.org/ 

Standard NLP option for Python; easy to pick up and play with, and includes several common corpora.

Mallet Java http://mallet.cs.umass.edu/ 

More technical toolkit, focused on current, high-complexity models.

LingPipe Java http://alias-i.com/lingpipe/ 

Another general-purpose NLP toolkit; offers industry licensing option.

Stanford CoreNLP Java http://nlp.stanford.edu/software/corenlp.shtml 

Standard tools in academia, tends towards cutting edge models.  Low ease-of-use, and academic 
licensing restrictions.

Alchemy API Cloud API http://www.alchemyapi.com/ 

Fanciest industry option (owned by IBM). Offers NLP, vision, other ML resources.



Other Resources

Speech Recognition Toolkit - http://kaldi-asr.org/ 

Association for Computational Linguistics

http://www.signalprocessingsociety.org/ 

http://aclweb.org/



Questions?

My contact info:
Denis Griffis

griffis.30@osu.edu
http://web.cse.ohio-state.edu/slate/


