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How the heck do we
get a computer to
understand text?



Natural language processing

From Wikipedia, the free encyclopedia

This article is about language processing by computers. For the processing of language by
the human brain, see L anguage processing.

Natural language processing (NLP) is a field of computer science, artificial intelligence, and
computational linguistics concerned with the interactions between computers and human
(natural) languages. As such, NLP is related to the area of human—computer interaction. Many
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| FROM AllAnimals
‘ where are all ‘ WHERE AnimalType =
the cats? 'Cat’




Speech
Recognition

<> OK Google, SELECT CurrentLocation
- ‘ FROM AllAnimals
‘ ‘ where are all WHERE AnimalType =

the cats? 'Cat’




Natural
Speech ~ Language
Recognition Processing

OK Google, SELECT CurrentLocation
‘ FROM AllAnimals
where are all WHERE AnimalType =
the cats? 'Cat'




“Yess! Yess! Its official Nintendo announced
today that they Will release the Nintendo 3DS
in north America march 27 for $250”



“Yess! Yess! Its official [Nintendo] announced
today that they Will release the [Nintendo 3DS]
in [north America] [march 27] for [$250]"



“Yess! Yess! Its official [Nintendo] announced
today that they Will release the [Nintendo 3DS]
in [north America] [march 27] for [$250]"

Company Product Date Price Region
Nintendo Nintendo 3DS March 27 $250 North America



“Yess! Yess! Its official [Nintendo] announced
today that they Will release the [Nintendo 3DS]
in [north America] [march 27] for [$250]"

Company Product Date Price Region
Nintendo Nintendo 3DS March 27 $250 North America

Natural language understanding






Nintendo will release the Nintendo 3DS
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Company Product Date Price Region
Nintendo Nintendo 3DS March 27 $250 North America



Nintendo will release the Nintendo 3DS
in North America on March 27 for $250.

Company Product Date Price Region
Nintendo Nintendo 3DS March 27 $250 North America

Natural language generation
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Rule-based methods Statistical methods



Rule-Based NLP

* Regular Expressions

R R
= Per cause_of_death
HHHHFHHHAHHFHH R H R

{

ruletype: "composite",

pattern: (([{ner:PERSON}]+) /died/ /of|from/ /a/? ([{tag:NN}]+)),

result: Format("per:cause_of _death(%s,%s)", $1l.word, $2.word),

action: (Annotate($1, kbp, "per"), Annotate($2, kbp, "per_cause of death"))
}

Example from Alan Ritter



Rule-Based NLP

« Keywords and arguments

Q0¥ & 3:40 9 i W 4 = 3:39
— remind me to buy milk tomorrow $ — remind me to Bob call Alice at Spnr Y
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Rule-Based NLP

« Keywords and arguments

° 'IDI' " = 3:40 ° 'IDI' " = 3:39

remind me tojbuy milkftomorrow $ — remind me tolBob call Alicejat 5prr Y

Add a remin Add a reminder

Buy milk Bob call Alice
(® Time (® Time
Tomorrow Today

Morning 5:00 PM



Rule-Based NLP

* Finite State Automata

Example from “Speech and Language Processing”, Jurafsky and Martin, 2009
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Statistical NLP

e Hidden Markov Models (HMMs); MEMMs

| can haz cheezburger




Statistical NLP

e Hidden Markov Models (HMMs); MEMMs, CRFs

| can haz cheezburger
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Statistical NLP

e Support Vector Machines (SVMSs)
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Statistical NLP

* Neural Networks (NNs)

\
Word count /i Shakespeare

Average token length

/? Biomedical abstract

“Knave” occurred?
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Input ' Output



Statistical NLP

» Other methods: matrix factorization, logistic regression, etc.




Rute-Baseda NLP Statisticat NLP

Lots of current work
uses both approaches
In joint systems!



These are models...



These are models...

...but models are only tools to solve
problems.
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Kinds of Machine Learning

~ Semi-

Supervised _
Unsupervised - Supervised
B 4

. ﬂiefzka Distantly-supervised,
weakly-supervised



Unsupervised Learning

Goal: Discover hidden
structure in data
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Goal: Use some known
Information, along with

hidden structure, to
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Semi-Supervised Learning
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Human effort required

Unsupervised Semi-supervised Supervised



Human effort required

Unsupervised Semi- superwsed Supervised

Classification power




At this point, you may be
asking yourself...



At this point, you may be
asking yourself...

?
? :.2 .

So what do you do with all this stuff?

?
' ?



Lots of things!



Machine Translation

Translate Q+
English Spanizh French English - detected  ~ 1"... English French Russian -

This translation |sucks * | 2TOT nepeBof OTCTOM

) o w0 A © # Wrong?

Etot perevod otstoy



Parsing / Tagging

Picard ordered tea.
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Information Extraction

“Abraham Lincoln was born
February 12, 1809, in Hardin
County, Kentucky...”



Information Extraction

Birth Dates
ID Month Day Year

February 12 1809

114

was born
February 12, 1809, in Hardin ﬁ
County, Kentucky...” Birth L ocations

Hardin Kentucky '‘Murica




Information Retrieval



Information Retrieval
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Information Retrieval

st (3O 816 > bing

1 | CATTACCGGAGATCCTA
Bioinformatics ATTACCGCAGAT ‘ 2 | CCCATTACGGCCGCAGATAA
3 | ATTACCGAA



Information Retrieval

Web
Search

Bioinformatics

Question
Answering

Google

ATTACCGCAGAT

Who played Malcolm
Reynolds?

Nathan Fillion

> bing

1 | CATTACCGGAGATCCTA
2 | CCCATTACGGCCGCAGATAA
3 | ATTACCGAA

Who played Real Madrid
last week?

Barcelona; final score 3-2
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Automatic summarization



Etc., etc., etc.

Automatic summarization

Bacon ipsum dolor amet spare ribs leberkas
filet mignon t-bone tenderloin ground round.
Leberkas kevin meatball, short ribs rump
andouille meatloaf pancetta shank bacon
pork belly frankfurter picanha shankle
sausage. Salami strip steak sirloin cow.
Andouille ball tip meatloaf biltong bresaola.
Cupim drumstick swine t-bone pork belly
frankfurter jowl chuck leberkas cow short ribs
ball tip.

Porchetta leberkas swine kevin ham capicola
shankle strip steak hamburger salami filet
mignon tri-tip bresaola picanha. Brisket tail
swine biltong, capicola shankle sirloin. Jerky
meatloaf ribeye, fatback turkey pork chop
porchetta landjaeger ham salami meatball
tongue pancetta kevin. Tri-tip swine filet
mignon meatloaf bresaola porchetta
pancetta salami frankfurter pork chop. Pork
loin jerky pork chop, drumstick chuck flank
ground round. Landjaeger hamburger
pastrami salami.



Etc., etc., etc.

Automatic summarization

Bacon ipsum dolor amet spare ribs leberkas
filet mignon t-bone tenderloin ground round.
Leberkas kevin meatball, short ribs rump
andouille meatloaf pancetta shank bacon
pork belly frankfurter picanha shankle
sausage. Salami strip steak sirloin cow.
Andouille ball tip meatloaf biltong bresaola.
Cupim drumstick swine t-bone pork belly
frankfurter jowl chuck leberkas cow short ribs
ball tip.

Porchetta leberkas swine kevin ham capicola
shankle strip steak hamburger salami filet
mignon tri-tip bresaola picanha. Brisket tail
swine biltong, capicola shankle sirloin. Jerky
meatloaf ribeye, fatback turkey pork chop
porchetta landjaeger ham salami meatball
tongue pancetta kevin. Tri-tip swine filet
mignon meatloaf bresaola porchetta
pancetta salami frankfurter pork chop. Pork
loin jerky pork chop, drumstick chuck flank
ground round. Landjaeger hamburger
pastrami salami.

Bacon bacon bacon
bacon pork!
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Automatic summarization

Sentiment analysis

m Kim Kardashian © L~ o Follow
L%

Life is meh, but donatos is
awesummimmim

w Kitn Kardashian @ 1- W Follow
1 Y

Jay-Z is great, 'Ye sucks!

*Not actual tweets



Etc., etc., etc.

m Kim Kardashian & L~ W Follow
Automatic summarization Life is meh, but donatos is
awesummimmm

Sentiment analysis

m Kim Kardashian & L~ W Follow

Jay-Z is great, 'Ye sucks!

*Not actual tweets



Etc., etc., etc.

m Kim Kardashian & L~ W Follow

\ haginain

Automatic summarization Life is meh, but donatos is
awesummimmm

Sentiment analysis

m Kim Kardashian & L~ W Follow
L mardaehiar

ay-Z is great, 'Ye sucks!

*Not actual tweets
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Sentiment analysis

Discourse analysis



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Discourse analysis

U: | want Chinese food.
S: Here are 473 Chinese places.

U: How about cheap ones on the
south side?

S: Here is 1 restaurant.
U: Eh, let's do Thai food instead.

S: I'm sorry, Dave, | can't let you
do that.



User Goals

Etc., etc., etc. Tun Type  Location Cheap?.

U: | want Chinese food.

Automatic summarization S: Here are 473 Chinese places.
U: How about cheap ones on the Chinese  South  Yes
Sentiment analysis south side?

S: Here is 1 restaurant.

Discourse analysis s
U: Eh, let's do Thai food instead.

S: I'm sorry, Dave, | can't let you
do that.
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[His response was
illogical.]



Etc., etc., etc.

Automatic summarization

Sentiment analysis

Discourse analysis

Segmentation

Phonemes

U|n]b|rlealk|albl]le

Morphemes
Un|break|able

Words

maytheforcebewithyou

. ]

May the force be with you

Sentences

[| spoke to Mr. Spock.]
[His response was
illogical.]

Topics

...who | met at a
Trek convention.

As for Star Wars...
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Automatic summarization

Sentiment analysis

Discourse analysis
Segmentation

Disambiguation and reference
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Disambiguation and reference

Word sense disambiguation

After | put him in [check]', he wrote
me a [check]®.



Etc., etc., etc.

\utomatic summarization

piscourse analysis

Disambiguation and reference

Word sense disambiguation

After | put him in [check]', he wrote

me a [check]®.

Coreference resolution

| spoke to [the customer] , then told

that

should fire [her] .



Word sense disambiguation
EtC-; etC., etc. After | put him in [check]', he wrote
me a [check]®.

Automatic summarization

Coreference resolution

| spoke to [the customer] , then told
that should fire [her] .

DIscourse analysis

Named entity recognition

[Bugs Bunny], __bought 50% of

Acme Corp. in [2004] .
Disambiguation and reference [ P ]Company [ Lear



Etc., etc., etc.

Automatic summarization

Sentiment analysis

And many more!

Discourse analysis
Segmentation

Disambiguation and reference



How can | get in on this?



NLP Toolkits

Toolkit Language Website
Apache OpenNLP Java https://opennlp.apache.org
General-purpose NLP toolkit; tends to use older models, but under Apache license.
Natural Language Toolkit (NLTK) Python http://www.nltk.org/
Standard NLP option for Python; easy to pick up and play with, and includes several common corpora.
Mallet Java http://mallet.cs.umass.edu/
More technical toolkit, focused on current, high-complexity models.
LingPipe Java http://alias-i.com/lingpipe/
Another general-purpose NLP toolkit; offers industry licensing option.
Stanford CoreNLP Java http://nlp.stanford.edu/software/corenlp.shtml

Standard tools in academia, tends towards cutting edge models. Low ease-of-use, and academic
licensing restrictions.

Alchemy API Cloud API http://www.alchemyapi.com/
Fanciest industry option (owned by IBM). Offers NLP, vision, other ML resources.



Other Resources

@ KALDI

7

e ;Sf!
JEEE ya 5;5;;,;;
SigRal Processing .5'0::!!.?6'/\—‘ *"’

Speech Recognition Toolkit - http://kaldi-asr.org/

http://www.signalprocessingsociety.org/

nAssociation for Computational Linguistics

http://aclweb.org/



and Machine Learning!

|
u e St I O | l S : Our Text Analytics sof tware
" uses the most advanced NLP

My contact info:
Denis Griffis MBA Rule #1:
griffiS 30@OSU edu Always Counter Buzz Words with Buzz Words

@TomHCAnderson

http://web.cse.ohio-state.edu/slate/



