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TL;DR

Increasing work on training embedding-based models for
biomedical applications, but not many resources to evaluate on.

Analogies have been highly useful in the general domain, so we
built an analogy dataset for BioNLP.

Findings:

I Current embeddings are good at direct chemical/biological
relationships, not so good at clinical semantics.

I Changes need to be made to the standard analogy methods to
reflect the complexity of real data.
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BMASS - BioMedical Analogic Similarity Set

ID Name Amb
Lab/Rx
L1 form-of 1.0
L2 has-lab-number 1.1
L3 has-tradename 1.5
L4 tradename-of 1.3
L5 associated-substance 1.6
L6 has-free-acid-or-base-

form
1.0

L7 has-salt-form 1.1
L8 measured-component-of 1.3
Hierarchical
H1 refers-to 1.0
H2 same-type 10.4
Morphological
M1 adjectival-form-of 1.1
M2 noun-form-of 1.0

ID Name Amb
Clinical
C1 associated-with-malfunction-of-

gene-product

2.6

C2 gene-product-malfunction-

associated-with-disease

1.5

C3 causative-agent-of 4.6
C4 has-causative-agent 2.0
C5 has-finding-site 1.9
C6 associated-with 1.2
Anatomy
A1 anatomic-structure-is-part-of 1.6
A2 anatomic-structure-has-part 5.4
A3 is-located-in 1.4
Biology
B1 regulated-by 1.0
B2 regulates 1.0
B3 gene-encodes-product 1.1
B4 gene-product-encoded-by 2.4

Cross-product of 50 samples for each relation:

2,450 analogies for each relation ⇒ 61,250 total analogies



This dataset represents real biomedical relationships. . .

But it doesn’t fit the standard paradigm!
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“Unassuming” the standard assumptions

3 key assumptions in evaluation methodology:

I Single Answer

I Same Relationship(s)

I Informativity

Each is violated in recent analogy datasets

I Google2, BATS3, Sem-Para4

All are problematic in real-world data!

2Mikolov et al. 2013
3Gladkova et al. 2016
4Köper et al. 2015



“Unassuming” the standard assumptions

Single Answer Same Relationship Informativity

The given analogy has only one correct target.
I Enforced by argmax over candidates for completing the analogy.

I If multiple analogies, must get at least one wrong.

Problem cases

flu : nausea :: fever :
sweating
weakness
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The given analogy has only one correct target.
I Enforced by argmax over candidates for completing the analogy.

I If multiple analogies, must get at least one wrong.
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sweating
weakness

Easy fix!
Allow for multiple correct answers; also report on all of them,
for fuller picture.
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“Unassuming” the standard assumptions

Single Answer Same Relationship Informativity

The relationship between exemplars a and b is specific enough to
suggest the correct target d for query c.

I Issue with very broad semantic or hierarchical relationships.

Problem cases

Generally related (UMLS)

socks : stockings :: Finns : Finnish language
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“Unassuming” the standard assumptions

Single Answer Same Relationship Informativity

The relationship between exemplars a and b is specific enough to
suggest the correct target d for query c.

I Issue with very broad semantic or hierarchical relationships.

Problem cases

Generally related (UMLS)

socks : stockings :: Finns : Finnish language

Fix during dataset generation
Review samples from each relation to ensure they’re properly
determined.



Modifying the evaluation methodology

a : b :: c : d∗ = argmaxd∈V
(
cos(d , b− a + c)

)

Evaluating analogies under 3 settings:

Single-Answer (SA) Single candidate target for each analogy se-
lected as the only “correct” answer.

Multi-Answer (MA) All candidate targets for each analogy are
considered to be correct.

All-Info (AI) Use all possible exemplar objects and all candidate
targets.

nodule
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a : b :: c : d∗ = argmaxd∈V
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Evaluation methodology

Reporting 3 metrics over ranked
candidates:

AccR Relaxed accuracy; correct if
any valid answer is the top choice

MAP Mean average precision

MRR Mean reciprocal rank

weakness
temperature

sweating
nodule

AccR 1.0
MAP 5

6

MRR 1.0



Overall results

I Results shown for Multi-Answer setting.

I Average performance is around 11% on all metrics, with all embeddings.
High variability between relationships!

I Used 5 different sets of embeddings trained on PubMed.



MAP/MRR give a better picture

I MAP < AccR indicates wider distribution of correct answers on L7
(has-salt-form)

I MAP > AccR shows that even if top answer is wrong, correct answers
aren’t far down on C6 (associated-with), B2 (regulates)



MAP/MRR give a better picture

I MRR > AccR shows that the best correct answer stays near the top on
C4 (has-causative-agent)

I MRR ≈ AccR reflects more consistent positioning of nearest correct
answer on H1 (refers-to), C3 (causative-agent-of)



All-Info benefits vary

I Extra examples help on H2 (same-type), L5 (associated-substance),
and C4 (has-causative-agent).

I But harm L1 (form-of) (4% absolute) and L6
(has-free-acid-or-base-form) (8% absolute)



Moving analogies forward

Single-Answer and Informativity assumptions addressed, but not Same
Relationship(s).

I Drozd et al (2016) use a parametric logistic regression that can be used
to learn affine subspaces.

Standard linear offset method does not work for real-world data!

I Our changes help, but overall performance is still low (as with other
recent datasets). Use MAP and MRR!

I Analogies are useful! We need to find better ways to tackle
this task.
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Thank you!

Dataset and source code at:
https://www.github.com/OSU-slatelab/BMASS

newman-griffis.1@osu.edu
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