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Abstract

Natural language processing research is constantly expanding to new domains of

text, new types of information, and new applications. A key factor for success in new

settings is an ability to capture the characteristics of the language to be analyzed: i.e.,

the sublanguage of interest. One powerful tool for capturing information about lan-

guage use is neural representation learning, a family of methods for mathematically

representing words, phrases, and other units of language, based on usage patterns

in large text corpora. Representation learning for language is predicated on the ob-

servation that lexical usage patterns convey important information about meaning,

and models this information in terms of geometric relationships between lexical repre-

sentations. Thus, learned representations provide a lens for analyzing and capturing

patterns of language use within restricted domains, as well as for general applications.

This thesis presents two main contributions to the literature. First, we present

a method for moving beyond word-level information to learn representations of do-

main concepts from arbitrary text corpora. We demonstrate that these representa-

tions capture domain-relevant information about similarity and relatedness, for both

biomedical and encyclopedic concepts, and show that they reveal clinically-significant

differences in how medical concepts are discussed among different types of health

documentation. We further show how concept-level representations learned using a

variety of techniques can be effectively combined for semantic grounding of text.
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Second, we present the functional status domain as a new area for NLP analy-

sis and application, with far-reaching impact in both healthcare delivery and social

benefits administration. We define how functional status information is realized in

practical language, and identify rehabilitation medicine documentation as a distinct

sublanguage rich in functional status information. Finally, we show that a combi-

nation of neural representation learning from well-chosen data sources and modeling

techniques informed by the characteristics of functional status information achieve

high-quality extraction of mobility-related information from clinical data, helping to

address issues of syntactic complexity and poor coverage in standardized vocabular-

ies. We conclude by identifying future directions leading from our work, including

broader application of representation-based analyses of differences in language use,

combination of different representation strategies for NLP applications, and further

analyses of the structure of functional status information to guide the development

of new representation methods for this domain.
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Chapter 1: Introduction

As the field of Natural Language Processing (NLP) has grown, exploration of new

applications for textual analysis, and new information domains to analyze, has been

a constant factor of research. From processing of English-language literature and

newswire text (Francis et al., 1982; Paul and Baker, 1992), NLP has expanded to

include legal documents (Biagioli et al., 2005; Aletras et al., 2019), financial infor-

mation (Hahn et al., 2018, 2019), scientific literature (Fricke, 2018; Nastase et al.,

2019), web content (Buck et al., 2014), and social media (Aramaki et al., 2011; Xu

et al., 2019), among many other areas, in myriad languages (Bikel and Zitouni, 2012;

Mille et al., 2019; Bojar et al., 2019). This process has been mirrored within the

domain of biomedicine, where NLP analysis has extended from discharge summary

and radiology report processors (Gabrieli and Speth, 1986; Ranum, 1989) to a vast

array of tools and analyses covering medical research (Neumann et al., 2019), social

media (Gonzalez-Hernandez et al., 2017), and a broad diversity of clinical specialties

(Velupillai et al., 2015).

Processing new domains of language requires two things: an understanding of

the characteristics of the target language domain, and reflection of these insights in

methodological development. A key technological advancement that has provided

invaluable support to both of these goals is the development of neural representation
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learning (Hinton, 1986; Bengio et al., 2003). In the NLP context, representation learn-

ing technologies produce real-valued vectors corresponding to linguistic units such as

words, phrases, and sentences. These representations are typically calculated from

some combination of statistical co-occurrence patterns in text and expert-curated

knowledge resources (Bengio et al., 2013), and thereby reflect the characteristics of

the type of language (and associated knowledge) they are trained on. Such vectors

are easy to incorporate as mathematical features for predictive models, in principle

enabling direct translation of statistical insights into actionable data. While repre-

sentation technologies have been key contributors to major recent advancements in

NLP, their role in modeling the semantics of a particular domain has typically fo-

cused at the single-word level, limiting their effectivness in specialized language with

multi-word expressions. Further, their effectiveness in capturing meaningful seman-

tics remains opaque, as direct evaluation of the semantic information they encode has

proven challenging.

1.1 Overall contributions

This thesis provides two main contributions to the NLP literature:

• We present novel techniques for both learning and adapting neural representa-

tions to capture domain-specific semantics at the concept level.

• We provide a case study applying representation learning techniques to func-

tional status information, a novel domain for NLP, which presents significant

research challenges and high impact in healthcare and government settings.
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1.2 Outline and detailed contributions

The remainder of this thesis is organized into three parts.

Part I introduces the domains of interest for this thesis. Chapter 2 introduces

conceptual frameworks of human function and their realization in language, and

highlights key opportunities for representation learning in this domain. Chapter 3

provides background on NLP in the clinical setting, and highlights key considerations

affecting NLP development and application within clinical language.

Part II then introduces the area of representation learning. Chapter 4 describes

the linguistic and mathematical theory underlying representation learning, and out-

lines methodological advances in the field, methods for analyzing the quality and con-

tent of representation spaces, and applications of representation learning techniques

to sublanguage analysis. Chapter 5 then describes our novel method for learning

representations of knowledge base concepts.

Lastly, Part III describes specific applications of representation learning techniques

for capturing the semantics of particular domains. Chapter 6 presents experiments

on adapting word-level representations to functional status information. Chapter 7

moves from words to concepts, presenting concept representation-based methods for

text disambiguation and normalization, in clinical and non-clinical settings. Finally,

Chapter 8 describes fine-grained analysis of concept reference patterns in specific

sublanguages using learned concept representations.

Chapter 9 concludes the thesis, highlighting key takeaways and directions for

future research.

A brief summary of the contributions of each chapter is provided below.
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1.2.1 Part I: The clinical domain and the functional status
sub-domain

Chapter 2: Functional status information in theory and practice

Functional status information (FSI) is an emerging application domain for NLP,

which we highlight as a case study for representation learning in this thesis. Func-

tional status captures the outcome of an individual (in some health state) interacting

with society and the world, typically through engaging in specific activities and par-

ticipating in social roles. Understanding an individual’s level of function is key both

for providing effective healthcare and for administration of social benefits programs,

such as disability insurance. We describe how functional status concepts may be

realized in natural language, and identify key gaps in methods and resources for ap-

plying NLP to FSI. In order to evaluate the generalizability of existing clinical NLP

tools to extract FSI, we analyze a multi-institution collection of clinical documents

from rehabilitation medicine, an area of medical practice focused on restoring and

optimizing function. We demonstrate that rehabilitation medicine documents can be

clearly distinguished from clinical records focused on diagnosis and treatment both

by their vocabulary and the medical concepts used, and identify clear cases of failure

when applying a benchmark clinical NLP toolkit to extract FSI.

Chapter 3: Characteristics of clinical text affecting representation learning

Text generated in a clinical healthcare setting, such as documents stored in Elec-

tronic Health Record (EHR) systems, pose unique challenges for NLP. Clinical lan-

guage is highly telegraphic, omitting semantically-significant information and utilizing

non-standard utterance structures. We highlight the implications of these characteris-

tics for NLP, particularly in the complex area of functional status information. At the
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semantic level, we investigate ambiguity in clinical text, a key challenge for reliable

identification of medical concepts, and describe twelve distinct types of ambiguity

deriving from both lexical and medicine-specific factors. While we find that current

datasets for medical concept extraction are insufficient to reliably model or evaluate

these different types of ambiguity, our ambiguity typology presents clear opportuni-

ties to leverage the lexical and semantic patterns encoded in learned representations

in future research.

1.2.2 Part II: Representation learning

Chapter 4: Techniques for learning representations of words and concepts

Representation learning has become a fundamental component of modern NLP.

Techniques for representation learning rely on specific linguistic and mathematical

insights about patterns of language use; we explain these insights, and illustrate

what they enable in terms of capturing information about language in restricted

domains. We then highlight key shifts in representation learning methodology in

recent years, including the development of word-level representation learning methods

such as word2vec (Mikolov et al., 2013a) and BERT (Devlin et al., 2019), and discuss

different strategies for evaluating the semantic content of these different representation

spaces. Finally, we summarize how these techniques have been used to capture and

explore distinctive lexical and semantic patterns within different domains.
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Chapter 5: Learning representations for domain concepts from text

We then describe JET, a novel method for learning representations of concepts

from curated terminologies, using an arbitrary text corpus with no human anno-

tations. JET outperforms prior biomedical concept representations, requiring an-

notated data or specialized preprocessing, on benchmark similarity and relatedness

datasets, and shows promise for unsupervised biomedical word sense disambiguation.

We further provide a new dataset of similarity and relatedness rankings for entities in

Wikipedia, and show that Wikipedia page representations from JET achieve strong

performance in this web data evaluation.

1.2.3 Part III: Clinical applications of representation learn-
ing

Chapter 6: Adapting word representations to the functional status domain

FSI exhibits two distinctive challenges for NLP that we approach with adaptation

of learned representations: a lack of standardized terminologies to reliably capture

natural language forms, and long, syntactically-complex reports of activity perfor-

mance. We first utilize a benchmark Named Entity Recognition (NER) model to

extract reports of mobility activity performance, and experiment with utilizing in-

put representation features from rehabilitation medicine-focused data, critical care

clinical data, and large-scale non-clinical data. We demonstrate that rehabilitation

medicine-focused features match the performance of the non-clinical data, despite a

three orders of magnitude difference in corpus size, and find that the best results are

achieved by striking a balance between corpus size and language representativeness

with the critical care clinical features. We then develop a new method for identi-

fying FSI by estimating the likelihood that each token in a document is part of a
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mobility activity report, using learned representation features, and show that this

model yields significantly higher recall on identifying long, complex FSI strings than

prior experiments. We apply this model to real-world healthcare data collected by

two U.S. federal agencies (National Institutes of Health and the Social Security Ad-

ministration), and demonstrate successful model generalization across different data

characteristics.

Chapter 7: Resolving lexical ambiguity with concept representations

Representations of knowledge base concepts and entries in sense inventories offer

highly informative features for determining which sense or concept is being referred

to in a given utterance. We present a novel supervised method for Word Sense

Disambiguation (WSD) that uses a context-sensitive combination of multiple repre-

sentations of senses. Our method achieves clear gains on benchmark WSD datasets

over single or concatenated representations, and outperforms standard baselines on

disambiguating lemmas not seen during training. We further apply this model in two

clinical settings: normalizing problems, treatments, and tests in clinical records, and

identifying mobility activities in physical therapy notes. Our method complements

string matching baselines for medical concept normalization, yielding competitive

overall performance in a 2019 shared task, and we demonstrate disambiguation across

multiple of the ambiguity types described in Chapter 3. On mobility activity reports,

our model achieves 90% accuracy over 13 labels in cross-validation experiments, and

is outperformed only by SVM classification with in-domain word representations.
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Chapter 8: Analyzing concept usage patterns in clinical subdomains

Our representation learning method described in Chapter 5 captures patterns in

how domain concepts are referred to within arbitrary text corpora. We learn JET

representations from diverse clinical document types, and demonstrate that analysis

of nearest neighborhood structure in the resulting representation spaces captures

clinically-relevant differences in concept reference patterns across different medical

specialties and stages of care.

1.3 Note on notation

Wherever a UMLS CUI is referred to throughout this thesis, it is generally pre-

sented with a descriptive string, as <CUI> <String>, e.g., C0009443 Common cold.
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Part I

Clinical Language and the
Functional Status Domain
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Processing the language of any text genre or information domain requires an

understanding of the characteristics of that domain. In this part, we first describe

Functional Status Information (Chapter 2), a new domain for NLP that captures

the lived experience of health as actualized through interactions with society and the

physical world. We identify key information gaps in capturing and analyzing FSI, and

describe specific opportunities and challenges for NLP in this domain. We expand

this discussion in Chapter 3 key characteristics of the clinical text genre (Chapter 3),

including both structural and semantic factors that directly affect the design and

evaluation of NLP methods for clinical language. The studies outlined in these two

chapters illustrate phenomena of FSI and the clinical genre that are not well addressed

by current technologies. In the remainder of this thesis, we describe the development

and application of representation learning techniques to close this technology gap.
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Chapter 2: Functional Status Information: An Opportunity

for Representation Learning

Human activity, and the impact of health conditions on it, is an important compo-

nent of contemporary conceptualizations of health. However, data on human activity

is not captured systematically in current health systems, and methods to analyze

these data are under-developed and under-resourced, severely limiting the utility of

existing information on activity for decision making. In the first portion of this chap-

ter, we describe key underlying conceptualization of human activity and its role in

models of health and disability, and illustrate how these conceptual frameworks can

be realized in real data about activity (referred to as Functional Status Information,

or FSI). We further identify major information gaps affecting both the availability

of FSI and the maturity of analytic models for processing it, and describe concrete

steps for the health information management and informatics communities to take

towards addressing these gaps.1 In the second section of this chapter, we provide

a significant step towards better understanding of language related to FSI, with an

analysis of rehabilitation medicine documentation. Rehabilitation medicine, a dis-

cipline focused on optimizing and restoring function, is a rich source for analysis of

1Portions of Section 2.1 previously published in D Newman-Griffis, J Porcino, A Zirikly, et al.
2019. “Broadening horizons: the case for capturing function and the role of health informatics in
its use.” BMC Public Health, 19(1):1288. Portions of Section 2.2 have been previously submitted
for publication and are currently in revision.
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FSI, and a key application area for informatics techniques targeting function and ac-

tivity. Our analysis demonstrates that rehabilitation medicine documentation forms

a distinct sublanguage within the clinical domain, and identifies core characteristics

of FSI reports informing development and application of NLP models.

2.1 Defining the functional status domain

2.1.1 Conceptualization and measurement of function

Activity and disability

The way in which we learn about our world as individuals and how we willfully

act within it is fundamental to human existence. In sociology, action theory describes

human activity, and its purposeful nature, in the context of environments and soci-

eties in which activities take place. Although first described in 1937 (Parsons, 1937),

the concept of human action has more recently been applied to the fields of medicine

and health sciences to characterize the consequences of health conditions as an impor-

tant and meaningful indicator of health. This concept is reflected in contemporary

models of disability, for instance, where disability is conceptualized as the outcome

of the interaction between the capabilities of individuals and the demands of envi-

ronments with which individuals interact. The premise that disability reflects how

people function given a particular context was articulated by Saad Nagi in the early

1960s (Nagi, 1965) and formed the basis for every contemporary model of disability

that followed. Now codified in the World Health Organization’s (WHO) International

Classification of Functioning, Disability, and Health (ICF) (World Health Organiza-

tion, 2001) and adopted internationally, human action is embodied in the domain of

activity and participation, where activity represents the execution of an action by an
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individual and participation represents actions through involvement in life situations.

Actions, which take place at the level of the individual, are distinguished from organ

or organ system function (ICF body structures/functions), or cellular/tissue function

(ICF health conditions).

What is function?

Human function can be broadly conceptualized as a continuum from body struc-

tures and functions to outcomes of interactions between individuals and their en-

vironments (World Health Organization, 2013; Beard et al., 2016), and has been

argued to reflect “the lived experience of health” (Stucki et al., 2017; Stucki and

Bickenbach, 2017a). The ICF defines function as an umbrella term encompassing all

aspects of the interaction “between an individual (with a health condition) and that

individual’s contextual factors (environmental and personal factors)” (World Health

Organization, 2013). Within the ICF model, function is broken down into several

components, illustrated in Figure 2.1. This model encompasses all aspects of an indi-

vidual’s interaction with the world, including organismal concepts such as individual

body functions/structures and pathologies, as well as activity and participation, and

all the environmental factors that affect these interactions. Importantly, activity and

participation reflect volitional actions that take place at the level of the whole person,

such as walking, communicating, applying knowledge, etc., which take place in, and

are influenced by, a life situation or social context. For the purposes of this thesis,

we operationalize the term “function” at this whole person level, and refer primarily

to “activity and participation” in detailed discussion.
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Figure 2.1: Diagram of the International Classification of Functioning, Disability
and Health (ICF) model of function. Reproduced by permission of World Health
Organization (WHO), from ICF (WHO 2001), p18.

Why are activity and participation important health indicators?

At both the individual and population levels, the ability of people to engage in

activities and their participation in social roles shapes the need for resources and the

associated response from national agencies, health systems, home and community-

based organizations, and other support entities (Hopfe et al., 2016). One timely

example of the need for information about activities and participation on a global

scale is a consequence of the dramatic shift in the world’s demographic profile due

to population aging. Among figures that the United Nations (UN) calculates in

relationship to population ageing is the support ratio, which is the number of workers

per retiree. By 2050, 36 countries, including the U.S., are expected to have support
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ratios below 2 (United Nations,, Department of Economic and Social Affairs,, 2017),

meaning that there will be fewer than 2 working persons to support each person over

the age of 60. Ultimately, an individual’s independence and ability to participate

in meaningful life activities (i.e., quality of life) will heavily influence resource needs

(Taniguchi et al., 2018) and, at the population level, will have an overwhelming impact

on national public health, pension, and social programs serving the elderly. As noted

in the WHO World Report on Ageing and Health, complex health states resulting

from the coexistence of multiple chronic conditions (which can exist at any age) are

not adequately represented by identifying or treating one disease at a time. As a

result, there is a need for measures that are more meaningful to individuals (Beard

et al., 2016).

The need for better information on activity and participation at the individual

level has also been widely endorsed (Seals et al., 2016; Stucki et al., 2018). Activity

and participation reflect the cumulative outcome of disease burden, i.e. multimorbid-

ity. In the U.S., it has been reported that over half of working age adults experience

one or more chronic conditions (Gulley et al., 2011). It is well established that there

is a strong and consistent association between a greater number of chronic conditions

and the existence and severity of limitations in activities and participation (Verbrugge

et al., 1989; Jones and Bell, 2004). Thus, the effect of multiple chronic conditions on

the lives of individuals is realized in their overall function (Stucki et al., 2017; Stucki

and Bickenbach, 2017a). Since function reflects, among other factors, the cumula-

tive impact of health conditions on the person, and is not disease specific (Cooper

et al., 2010), its use as a health indicator helps to address major barriers to holistic,
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patient-centered care, such as fragmentation in care resulting from multiple and often

competing disease-specific interventions (Hopfe et al., 2018).

In clinical settings, the inclusion of information on activity and participation in

case mix calculations has been shown to improve the prediction of patient needs and

resource use (Hopfe et al., 2016). Evidence suggests that in cases of multi-morbidity,

reducing the complexity of an individual’s overall health state to approaches focusing

on each disease individually fails to provide adequate care for this growing segment of

the global population (Banerjee, 2015). Viewing the outcome of these complexities in

the form of whole person function, i.e., activity and participation, is therefore likely to

clarify approaches to intervention (Hopfe et al., 2016; Taniguchi et al., 2018). Function

reflects a health continuum and thus is more comprehensive in its characterization of

health than other endpoints like morbidity or mortality (Hopfe et al., 2018). Indica-

tors of function are strongly predictive of mortality (Keevil et al., 2018) but have the

additional advantage of being more proximal health indicators, permitting earlier and

potentially more effective interventions (Taniguchi et al., 2018; Cooper et al., 2014).

Simple and objective tests of physical performance have been included as biomarkers

in studies of ageing, outperforming more traditional impairment measures in models

predicting mortality (Cooper et al., 2014). Markers of frailty that include physical

function have been associated with employment difficulties in late middle age (Palmer

et al., 2016). In addition to predicting mortality, indicators of physical function have

been shown to predict other important and more immediate outcomes such as sub-

sequent disability (Perera et al., 2015) and dementia (Beauchet et al., 2016) among

older adults. In the context of population ageing, the prevalence of multi-morbidity
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within populations and within individuals will have associated consequences in func-

tion. Thus, information about function at both the individual and population level

is critical for the design of healthcare systems, home and community-based supports,

and for resource allocation.

How have activity and participation been measured?

Models of function have historically been developed in the context of discussing

disability, which is often described in terms of limitations in function (Nagi, 1965;

Institute of Medicine, 1991, 1997). However, these are conceptual models, describing

the broad components that contribute to function, and have proven difficult to trans-

late to data models that can capture specific aspects of function in context and how

they relate to one another. Even the ICF, the most detailed framework developed for

function, does not formally describe the relationships between different structures,

activities, and environmental factors. Thus, how best to measure function, and par-

ticularly activity and participation, remains an open question despite international

efforts (Altman, 2009; Verbrugge, 2016). Many of the existing measurements are at

the population level, in the form of national survey questions (see Altman (2009) for

a detailed review of many such survey instruments). While these are relatively easy

to administer with high coverage, they are necessarily limited in detail, in order to

minimize respondent burden, and are unable to capture the individual perspective.

Some efforts have been made to systematically capture information on activities of

daily living (ADLs) in individual healthcare encounters; however, these have been

captured relatively rarely and only present one small piece of the overall picture of

activity and participation (Verbrugge, 2016; Bogardus et al., 2004). Notably, infor-

mation about the environment in which an individual functions is rarely captured
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under either approach, despite being central to concepts of function and disability.

This continuing debate and development of instruments to measure function means

that even where measurements of activity and/or participation are captured, they

cannot easily be recognized as such or mapped to standardized vocabularies and data

models for analysis.

Definition and examples of terms

One effect of the malleable definitions of function and its measurement is that

language used for these concepts varies widely, particularly between different scientific

fields. For clarity, we define our key terms here, and provide examples of each.

Function “A dynamic interaction between a person’s health condition, environmen-

tal factors, and personal factors” (World Health Organization, 2001). This is an

umbrella term including cellular and tissue function, organ and body structure

function, and whole person function.

Activity and participation the outcome of the interaction between an individual

(with some health condition) and their environment, including specific activities

and participation, as well as personal contextual factors; also referred to as

whole person function. This encompasses basic willful actions, specific tasks,

organized activities, and role participation (Altman, 2009; Madans et al., 2004).

Examples include walking (including the environment being walked on, anything

used to assist in performing the activity, etc), taking public transportation

(which combines walking with other activities such as identifying a destination,

sitting, etc), or participating in work.
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Activity report a recorded observation of activity and/or participation, which iden-

tifies relevant components of a specific activity or participation outcome and

records them in structured or unstructured data. Examples include, “Patient

walked one lap in the hallway,” or “Sue reports to work every day at 9 and

works with no limitations until 5pm.” Prior work has referred to informa-

tion samples of this type variously as “functioning information” (Stucki and

Bickenbach, 2017b), “functional status terms” (Kuang et al., 2015), “functional

status information” (Thieu et al. (2017); and used throughout this dissertation),

“functional health status” (Skube et al., 2018), and other terms. However, prior

studies have not specifically distinguished information about activity and par-

ticipation from information about other elements of function; thus, we adopt

the term “activity report” to clearly distinguish activity and participation in-

formation from other types of health information.

2.1.2 The information gap: What’s missing?

While information on pathology, and even impairments of individual body func-

tions, has been captured at a high rate for use in many modern health systems (White

et al., 2017), information on activity and participation is captured relatively rarely

and remains difficult to use effectively (Stucki and Bickenbach, 2017a; Brown et al.,

2017). In order to utilize data on activity and participation, i.e., activity reports,

the healthcare field has two primary needs: (1) standardized procedures and tools

for capturing activity reports routinely and quickly (both in and out of the clinic),

and (2) methods for analyzing activity reports to support evidence-based decision

making. We suggest approaches towards meeting both of these needs, and provide
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four concrete calls to action, with example short term goals for each, to improve both

the availability and the utility of activity and participation information for modern

health systems.

How can information on activity and participation be captured?

At the population level, most countries collect basic information on function via

national censuses and surveys (McPherson et al., 2017), but this information is rarely

captured in sufficient detail or frequency to have an impact on healthcare systems

(Stucki and Bickenbach, 2017a). Thus, national surveys cannot be responsive to

information needs in real time. At the individual level, some self-administered surveys

for measuring specific aspects of functional status have been developed (Bowie et al.,

2007), and social media technologies have been shown to passively capture some

information about individual function (Kuang et al., 2015); wearable devices are

also an emerging technology for capturing individuals’ activity-related information.

However, these tools are, at least currently, difficult to standardize and apply to

reliably capture information on activity and participation at scale. Health systems,

which many individuals encounter fairly regularly, offer another logical source for

capturing information about activity and participation, which can be combined with

other sources for a fuller picture of individual function. While some information

about activity and participation is already collected during healthcare encounters,

there remains significant variability in terms of how often and on whom it is collected,

as well as what information is captured (Stucki and Bickenbach, 2017a; Hopfe et al.,

2018; Cooper et al., 2014; Brown et al., 2017). In addition to objective observations

of activity and participation, expanded documentation of activity reports in health
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records can also capture self-reported data, which complements clinical assessments

(Bogardus et al., 2004; Burns et al., 1992).

The current scarcity of activity reports at the individual level, recorded via diverse

modalities, instruments, and language, presents challenges for their use in decision

making. Firstly, to support evidence-based decision making in health systems, health

information must be standardized and interoperable to optimize its potential useful-

ness (Hopfe et al., 2018). Usefulness, in turn, can only be achieved when raw data are

translated into knowledge that can change practice, requiring analytics. An extraor-

dinary volume of data generated in health systems (Raghupathi and Raghupathi,

2014), and many of these data may include errors that impact analytics (Ash et al.,

2004; Weiskopf and Weng, 2013). Coordination with data from surveys, self-reported

tools, and other media can improve accuracy, but increases the volume of data that

must be processed. Thus, concerted efforts are needed to tap into the potential of

these sources of information on activity and participation. A data-driven approach

leveraging current techniques in health informatics to extract information about func-

tion, in particular activity and participation, is needed and represents an effort that

requires the involvement and coordination of many entities (Beard et al., 2016).

How can information on activity and participation be analyzed?

The field of health informatics involves the use of health-related data for scien-

tific inquiry and discovery and for decision making in healthcare and government

(Kulikowski et al., 2012). This definition encompasses a wide variety of analytic

methods, which can be broadly separated into analyses of structured data (i.e., data

fields such as vital signs, demographics, lab readings, etc) and unstructured data (e.g.,

free-text health records or medical images). Analysis of structured data has proven
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invaluable in advances in medical informatics and public health, such as monitoring

cancer incidence and treatment at a population level (White et al., 2017), predict-

ing the need for specific interventions in individual breast cancer treatment (Specht

et al., 2005), cohort identification in Nordic countries (Maret-Ouda et al., 2017), and

many others (Oellrich et al., 2015; Shortreed et al., 2019). In the area of functional

status measures and its correlation to mortality risk, factors such as age, gender,

and some ADL information have been used to predict 2-year mortality (Carey et al.,

2004). However, a lack of standardized data models means that activity reports are

difficult to capture in structured form. Even where some simpler aspects such as

ADLs are captured in health records, they are difficult to correlate across samples

(Brown et al., 2017); existing structured judgments also often lack the granularity

to capture functional limitations informatively (Nicosia et al., 2019). Ongoing devel-

opment of standards for recording information relevant to activity, such as physical

therapy outcomes, offers one way to improve capture of structured data for analysis

(Chesbrough et al., 2018). Further, imaging techniques are growing as an area of

assessing impairments and associated functional limitations (Steinheimer et al., 2019;

Crawford et al., 2019), although such techniques impose high provider burden. Thus,

we focus our discussion on unstructured text—particularly in health data—where ac-

tivity reports have historically been captured (Bogardus et al., 2004; Nicosia et al.,

2019), and which offers flexilibity to capture relevant details such as environmental

or personal factors. While this flexibility can contribute both to provider burden in

writing documentation and analytic burden in extracting useful information from it

(Rosenbloom et al., 2011; Payne et al., 2015), technologies such as speech recognition
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and natural language processing (NLP) can be used to reduce this burden while en-

abling automatic extraction, organization, and summarization of relevant information

(Payne et al., 2015; Hoyt and Yoshihashi, 2010; Blackley et al., 2019).

How has NLP been used in clinical care and research?

Natural Language Processing (NLP) is a broad field of research that has been

used for a variety of purposes in processing health-related text data. The most com-

mon application of NLP for health has been automatically extracting and recognizing

health-related information in text (Meystre et al., 2008; Kreimeyer et al., 2017; Wang

et al., 2018), such as symptoms, procedures, and diseases (Doğan et al., 2014; Soysal

et al., 2018; Uzuner et al., 2011), medications (Deléger et al., 2010; Uzuner et al.,

2010), health events (Sarker et al., 2015; Haerian et al., 2012), and patient character-

istics (Shivade et al., 2013), among other examples. Many advances in NLP for health

have been enabled through shared tasks (Huang and Lu, 2016), which engage a wider

research community to solve a specific research problem such as detecting smoking

status (Uzuner et al., 2008) or heart risk factors (Stubbs et al., 2015). NLP has a long

history of research and operational use in clinical informatics (Friedman et al., 1995),

and has proven especially helpful for several tasks that are difficult or expensive for

humans to complete, such as detecting rates of patient readmission to different fa-

cilities (Rastegar-Mojarad et al., 2017). NLP methods have also been incorporated

operationally in diverse decision support systems including modeling disease progres-

sion, identifying cancer-related information in pathology reports, and risk assessment

tools (Gonzalez-Hernandez et al., 2017; Demner-Fushman et al., 2009).
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While NLP for healthcare applications has historically focused on diagnostic in-

formation such as diseases, symptoms, medications, and procedures, more recent re-

search is expanding both within and outside the clinic to consider contextual factors

and other data sources. For example, homelessness is an important social indicator of

health that can be extracted from the text of clinical encounters (Bejan et al., 2018;

Gundlapalli et al., 2013b). NLP techniques have also been instrumental in leverag-

ing pervasive social media data for diverse applications, from detecting adverse drug

reactions to epidemiological surveillance (Demner-Fushman et al., 2009). Social me-

dia data have been particularly transformative for monitoring and analyzing mental

health, a critical component of function. For instance, NLP techniques have been

used to assist moderators of online forums by automatically flagging posts suggest-

ing a mental health crisis—such as suicide risk—for immediate human intervention

(Zirikly et al., 2016). Current efforts are also being put into creating datasets that

would further application of NLP techniques in this domain (Shing et al., 2018; Zirikly

et al., 2019).

How has unstructured activity and participation information been ana-
lyzed?

Structured data about activities, participation, and associated limitations are cen-

tral to disability research, assistive technology development, and many other fields.

These data can be gathered from national surveys (Frochen and Mehdizadeh, 2017;

Lin and Wu, 2014), obtained via specialized research instruments (Zahuranec et al.,

2017), or modeled from available clinical information (Hart et al., 2011), although use

of this information in healthcare delivery remains relatively limited (Garçon et al.,

2016). Analyzing unstructured text information about activity and participation,
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however, along with associated environmental and personal factors, is an emerging

area of interest in health informatics research. Recent work has included collecting

self-reported function terms by manually reviewing clinical documents and online

forums (Kuang et al., 2015), and identifying groups of phrases describing various

aspects of function via clinical chart review (Skube et al., 2018); notably, the ma-

jority of these terms were not found in established terminological resources like the

Unified Medical Language System (UMLS) (Bodenreider, 2004). To address this

issue of coverage, some researchers interested in activity and participation have uti-

lized application-specific vocabularies compiled by clinical staff. Such handcrafted

approaches have been successful in various applications, including automatically as-

signing some ICF codes in discharge summaries (Kukafka et al., 2006), using ICF

codes for information retrieval (Sundar et al., 2008), and predicting patients’ rehos-

pitalization risk (Greenwald et al., 2017). Other work has avoided the coverage issue

by using vocabulary-agnostic methods that are targeted to specific types of activity

reports (Newman-Griffis and Zirikly, 2018). Additionally, activity and participation

information has been used in the extraction and modeling of other functional out-

comes, such as frailty or grave illnesses, from clinical text (Shao et al., 2016; Abbott

et al., 2017; Davis et al., 2013). These studies represent significant initial efforts in

analyzing activity and participation information with NLP, but the lack of systematic

alignment with an overall conceptual framework for activity and participation and

lack of shared definitions of the analytic tasks pose challenges for synthesizing and

building on these efforts.
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What is needed to improve analysis of activity and participation informa-
tion?

While activity reports may not yet be commonplace or a robust part of medi-

cal records, important information on activity and participation is currently being

recorded, and is most often located in the free text portions of clinical notes. Thus,

we focus on NLP as a critical tool for capturing this information for use and analysis.

NLP, like other techniques used in health informatics, is a complex field that relies on

a multitude of resources to achieve optimal performance. In the following sections, we

walk through several factors in effective informatics, what is needed to support them,

and the particular challenges of supporting these needs in the context of activity and

participation information analysis. These points are also summarized in Table 2.1.
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What data are needed for successful informatics?

Much of the potential of health informatics is predicated on the availability of

data. To develop and evaluate informatics methods for activity and participation, it

is necessary to have data that have been annotated, or marked by experts as to what

relevant information it contains and where that information can be found. Annotation

serves two primary roles in informatics: to tell analysts and machine learning systems

what specific information to focus on; and to serve as a gold standard for evaluating

proposed automated methods and supporting benchmarking and comparison within

a broader research community.

Examples of annotations for activity and participation information might include

highlighting descriptions of specific actions (e.g., walking, climbing, shopping, clean-

ing) or life situations in free text, or even what type of clinical evaluation is being

described. Annotating such information requires both identifying and standardizing

the components of activity reports in clinical records. Function is defined within the

ICF as the outcome of the interaction of individuals with various contextual factors,

which means that descriptions of activity and participation tend to be complex and

rely on multiple pieces of evidence. For example, a therapist might observe that a

patient is able to walk with a rolling walker for 300 feet. While the activity report

that needs to be captured is focused on the action (“walk”), this information is con-

textualized by other factors such as the assistive device (“rolling walker”), and these

relationships must be captured in annotation as well.

In addition to annotating data, it is important to devote research and adminis-

trative efforts to collecting and sharing large volumes of data that represent activity

and participation information. Many recent advances in statistical methods for NLP,
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particularly deep learning technologies, have relied on the availability of thousands or

millions of documents (Hirschberg and Manning, 2015), but virtually no documents

with activity and participation information are available to the broader research com-

munity at present. Semantic approaches leveraging expert knowledge have been used

to great effect in low-data settings in the past (Jovanović and Bagheri, 2017); how-

ever, such methods have typically relied on robust standardized resources that are

lacking for activity and participation, emphasizing the value of statistical learning

from large datasets.

In medical data, which often contains protected health information (PHI), there

are two main strategies for collecting such datasets. First, research groups within a

single institution or collaboration may collect private data under an IRB-approved

protocol. These data may be re-used or shared after the initial study via mechanisms

such as protocol amendments, designing new protocols, and developing business or

data use agreements. While these tend to be limited to specific named parties included

in the protocol or legal agreements, and may involve lengthy approval processes, such

mechanisms have been effectively used for a large variety of data sharing scenarios

in health research (Pisani et al., 2016). A second strategy is to curate de-identified

datasets that remove PHI and are then made more widely available while taking

appropriate precautions for data stewardship. This is not a simple task: though

de-identification can be performed without significantly reducing relevant clinical in-

formation (Meystre et al., 2014), it is by no means a perfect process (Cimino, 2012;

Hripcsak et al., 2016), and defining what qualifies as de-identified requires agreement

between all relevant stakeholders, such as IRBs, privacy offices, government entities,
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and most certainly patients. De-identified datasets are thus rare, but have an out-

size impact in supporting rapid and effective research within a whole community.

Under any chosen mechanism, sharable datasets of activity reports will contribute

significantly to informatics research and applications using activity and participation

information.

How do we make use of these data?

Applying informatic methods to use activity and participation information in clin-

ical and administrative practice requires addressing a wide variety of analytic chal-

lenges. One challenge is that many specific analytic tasks do not clearly correspond

to existing informatics research problems. For example, activity reports, such as

“walks without gait aid 50 feet in hallway”, involve the interaction of several con-

cepts. Recognizing and extracting such reports from text requires both identifying

the component concepts (e.g., the action “walks”, environmental factors “in hallway”

and “without gait aid”, and the specific distance “50 feet”) and linking them to-

gether. Walking in an indoor hallway is significantly different from walking across

rough terrain outside; connecting these elements is necessary to extract the atomic

outcome being recorded. This task is further complicated when multiple outcomes

are described in a single report; for example, “ambulate in the hallway and stairs”

refers both to walking and to climbing (two distinct activities in the ICF). Thus,

modeling the complex semantics of activity reports may involve combining multiple

existing research problems, such as named entity recognition, syntactic dependency

parsing, and even conceptual inference.
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Even well-studied problems such as information retrieval or relation extraction can

face new challenges for activity and participation information. For example, some pa-

tient records, such as History and Physical Examinations, often contain only a few

sentences describing physical and mental function among a much larger concentration

of diagnostic history, past procedures, etc. For a healthcare provider or administrator

attempting to locate activity and participation information about a patient, such as

a physical therapist tracking activity history or an analyst surveying inpatient func-

tional outcomes, it is therefore necessary to pinpoint which sections or paragraphs

of a long document include important information to review. Furthermore, such

users must be able to quickly access and intuitively organize patient records from

a variety of disciplines. These applications encompass diverse NLP tasks, includ-

ing information extraction and retrieval, for identifying and organizing activity and

participation information in the medical record; knowledge representation, for cap-

turing clinically-informed relationships between activity and participation concepts;

and determining the relevance of documents with respect to particular criteria, such

as potential limitations in function. As with all complex tasks and modern problem

solving approaches, addressing these issues for practical care will require interdisci-

plinary collaboration between clinical or domain experts, knowledge representation

specialists, and informaticians at all stages of the analytic process, from defining goals

to practical implementation in healthcare systems.

What resources do we need?

Beyond the quantity and quality of available data, many successful clinical ap-

plications of NLP have been enabled by robust medical knowledge sources. These

sources are referred to by various names, including (but not limited to) taxonomies,
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terminologies, and ontologies. These terms are used inconsistently in the literature,

so we define each of them for this article as follows. Terminologies capture the diverse

names used to refer to biomedical concepts, such as diseases, substances, measure-

ments, etc, and are intended to both catalogue distinct concepts and provide a more

or less a comprehensive reference for the ways these concepts can be referred to.

Biomedical terminologies often include elements of domain-specific ontology in their

structure, which describe invariant classes of concept, such as diseases, symptoms,

biological processes, functions, etc. Ontology also describes relations that hold uni-

versally between these classes: for example, that convulsions are a symptom of seizure

(Bodenreider et al., 2004). Many terminologies have been developed as formalized

coding systems, and can be referred to as classifications or taxonomies ; the Interna-

tional Classification of Diseases (ICD), another WHO reference classification, being a

salient example. As a result, the organization of many terminologies distinguishes not

only between ontologically different classes (e.g., febrile vs afebrile seizure), but also

epistemologically distinct observations (e.g., tuberculosis identified via microscopy or

bacterial culture) (Bodenreider et al., 2004). Both types have been critical compo-

nents of many successes in health informatics (Oellrich et al., 2015; Haendel et al.,

2018).

However, comparable knowledge sources are few and far between for non-medical

aspects of function. The ICF, originally developed in 1980 as the International Clas-

sification of Impairments, Disabilities, and Handicaps (ICIDH) and revised in 2001

to better model environmental aspects of function (Simeonsson et al., 2000), is a

conceptual terminology that was designed to provide a common language for a wide

variety of administrative and policy needs such as reporting, service coordination,
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and policy development (World Health Organization, 2013). Though the ICF has

been integrated into the UMLS, and some efforts have been made to map it to other

ontological resources (Della Mea and Simoncello, 2012), comprehensive coverage of

practical vocabulary has never been its intent, and mappings to other well-developed

terminologies such as SNOMED CT or LOINC are minimal. As a result, its cov-

erage and granularity for coding practical information on activity and participation

has been shown to lag behind higher-coverage medical terminologies (Tu et al., 2015).

Additionally, the distinctions it draws do not necessarily reflect a clinically-based orga-

nization of knowledge. As a practical example, the mobility-related action of walking

is not linked within the ICF to terms commonly used in practice, such as ambula-

tion. A recent review found several other criticisms of the organization of the ICF,

such as its emphasis of the health condition component, the ambiguity of concepts,

and its “lack of a clear ontological structure” (Heerkens et al., 2018). Some of these

criticisms may be related to the lack of revisions to the ICF over the years. While the

WHO publishes updates to the language of the ICF each year, it has never been re-

vised, unlike the ICD, which is currently under its 11th revision. Thus, while the ICF

has been hailed as the “best prospect for an internationally recognized, sufficiently

complete and powerful information reference for the documentation of functioning

information” (Hopfe et al., 2018), and it has the potential to be effectively combined

with other vocabularies for coding purposes (Vreeman and Richoz, 2015), a number

of practical shortcomings make it difficult to utilize for successful NLP methods re-

lying on dictionary definitions or common patterns in order to extract activity and

participation information.
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2.1.3 Next steps for FSI research

Function is an important indicator of health from both population and individual

perspectives. However, information on function, and particularly on activity and par-

ticipation, has not been used in a routine and standardized way when evaluating and

monitoring the health of individuals from a holistic viewpoint. Informatics can enable

identification, extraction, and organization of activity and participation information

for applications such as disability assessment and health monitoring (Abbott et al.,

2017; Davis et al., 2013), and can also be used in software or devices to assist people

with disabilities to engage in daily activities effectively (Sorna et al., 2009; Newell

et al., 1998). While existing applications of informatics methodologies to activity and

participation information have shown promise, they face several challenges, including

reliance on manual collection of non-standardized terminologies in text by domain ex-

perts, a lack of a shared systematic framework for activity and participation analysis,

and a lack of relevant data.

To drive informatics forward as a tool for capturing and utilizing activity and par-

ticipation information, we recommend four important steps: (1) make activity and

participation annotation standards and datasets available to the broader research

community; (2) define common research problems in automatically processing activ-

ity and participation information; (3) develop robust, machine-readable ontologies

for function that describe the components of activity and participation information

and their relationships; and (4) establish standards for how and when to document

activity and participation status during clinical encounters. In this thesis, we present

initial research on the language of functional status information and the utilization

of representation learning methodologies to capture it in diverse data settings.
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2.2 Rehabilitation medicine documentation forms a distinct
clinical sublanguage

In order to identify data-driven directions for research and development of NLP for

FSI, we use sublanguage analysis to identify characteristics of FSI-related language.

Sublanguage analysis is a corpus linguistic tool that has proven useful for adapting

NLP techniques to many different domains (Grishman and Kittredge, 1986; Grish-

man, 2001). It has been instrumental in the successful development of NLP techniques

for biomedical data: for example, Friedman et al. (Friedman et al., 2002) described

two distinct sublanguages in the biomedical domain—clinical text and biomedical

literature—and each of these has seen significant subsequent development as indi-

vidual avenues for NLP research (Simpson and Demner-Fushman, 2012; Gonzalez-

Hernandez et al., 2017). In addition, as machine learning technologies such as deep

learning have continued to advance, large and publicly-sharable linguistic corpora

have become more and more critical for enabling modern NLP advances (Hirschberg

and Manning, 2015). An understanding of the unique characteristics of a language

or sublanguage is a critical element of developing such corpora (Biber, 1993).

To gain an initial understanding of the language of functioning information as

something distinct from existing work on health conditions and curative care, we turn

to rehabilitation medicine. Rehabilitation is a health strategy focused on functioning

outcomes (Stucki et al., 2018), and thus represents a rich source for learning about

how functioning concepts are described and evaluated. We analyze three distinct

EHR corpora, each including both rehabilitation and non-rehabilitation documents,

and demonstrate that rehabilitation documents exhibit markedly different linguistic
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characteristics from other healthcare records. We also find significant variation be-

tween document types across institutions, reinforcing the importance of moving away

from the current single-institution model of clinical NLP to support generalizing to

broader and more diverse clinical data. We further demonstrate that a commonly-

used system for clinical NLP produces several patterns of error in processing rehabil-

itation documents, and show that these are related to the structure and terminology

of functioning information. We conclude our analysis by identifying several clear di-

rections for improving our understanding of the language of functioning information

and developing reliable NLP systems for its extraction.

2.2.1 Materials

We analyzed three corpora of free-text EHR data from different institutions, to

control for institutional preferences in linguistic patterns. Each institution used a

different EHR system at time of corpus retrieval, and each system assigned documents

to different types (e.g., Discharge Summary, History & Physical) within the EHR.

We therefore normalized each set of document types to a shared set of labels, and

describe them using the following terms:

• Document type: (also referred to as “doctype”) the document’s type within

the originating EHR system.

• Schema: three different levels of classification—Domain, Discipline, and Func-

tional Area—described in more detail below. These are non-hierarchical; i.e., a

document’s Domain label does not restrict its possible Discipline label. Each

document may have a label for each of the three schema.
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• Schema class: (also referred to as a “class label” when applied to an individual

document) a specific class within a schema. Classes are mutually exclusive: i.e.,

a single document cannot belong to multiple Domain classes.

The Domain schema includes two classes. Diagnostic document types are those

primarily concerned with assessing, diagnosing, and treating patient health condi-

tions; e.g., symptoms, procedures, and clinical findings. Functioning document types

are focused on evaluating and improving patient functioning; these are primarily reha-

bilitation and therapeutic encounters in our data, though they include other encounter

types such as those focused on mental health and social interactions.

The finer-grained Discipline schema encompasses four classes: Medical, for records

from medically-focused (i.e., curative or preventive) encounters; Therapy, for thera-

peutic encounter records; Ancillary, for documents regarding psychological or ancil-

lary care services, including mental health assessments and social work evaluations;

and Other, primarily for administrative documents such as case management records

and patient visit reminders.

Finally, documents within the Functioning domain fall into one of eight Functional

Area classes. These are PT, for physical therapy; OT, for occupational therapy; RT,

for recreational therapy; SLP, for speech language pathology; Psych, for psychological

encounters; SW, for social worker interactions; Neuro, for neurological evaluations fo-

cused on functioning; and General, for rehabilitation-focused encounters not classified

at a more granular level.

Table 2.2 describes the frequency of each Domain, Discipline, and Functional Area

class among the three EHR corpora, along with the number of EHR document types

within the class. As these broad classes often encompass a wide variety of document
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types, we retain the original document types from the source EHR to use in our

analysis. High variability in some catchall document types meant that they could not

be clearly assigned to an appropriate schema class; we therefore excluded these labels

from our analysis. We also excluded any document types with fewer than 20 records

as not containing a sufficiently representative sample.

BTRIS

We obtained a dataset of 155,215 free-text documents from the Biomedical Trans-

lational Research Information System (BTRIS) of the NIH Clinical Center (Cimino

and Ayres, 2010) under an NIH Office of Human Subjects Research determination.

These were associated with inpatient and outpatient encounters of 19,008 patients

over 2 years (2014-2015) in the NIH Clinical Center. Approximately 40% of these

records were sourced from the Rehabilitation Medicine Department of the Clinical

Center, with the remainder primarily consisting of consults and consult follow-ups

from other departments. All records were collected using the NIHCC Clinical Re-

search Informatics System (CRIS), the Clinical Center’s EHR platform. The text

records were automatically deidentified before being released to us.

The records in this dataset were assigned fine-grained document types within the

Clinical Center EHR, including such information as source department, note type, and

stage of care: one representative example is Urology consult—Initial. Mapping from

these types to schema classes was constructed in consultation with a rehabilitation

domain expert, and document types were deemed sufficiently specific that further

division was unnecessary.
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OSUMC

We also analyzed a set of documents from the Wexner Medical Center at the Ohio

State University, obtained under a protocol approved by OSU Medical Center IRB.

This consisted of 418,524 free-text records associated with 4,689 unique patients over

8 years (2005-2012). The patient population included both inpatient and outpatient

admissions for patients diagnosed with a variety of chronic diseases, including chronic

lymphocytic leukemia, prostate cancer, and heart and kidney failure. All records were

collected from the OSUMC EHR system (Epic).

The OSUMC records were distributed to us as CSV files, including note text and

document type among other metadata. Documents were originally assigned to one

of 36 document types: however, several of these, such as Progress Note, included

documents from a wide variety of encounter types. We reviewed samples from each

document type and designed regular expressions to assign more specific labels to those

that showed high variability; for example, Progress Note was split into subtypes for

PT, OT, SLP, Psych, and Social Work. This yielded a final set of 52 topically-

consistent document types.

MIMIC

Finally, we analyze the free-text portion of the publicly-available MIMIC-III dataset

(Johnson et al., 2016), including over 2 million deidentified text records associated

with over 61,293 hospital admissions of 46,467 distinct patients (38,597 adults and

7,870 neonates) to Beth Israel Deaconess Medical Center, in the period between 2001

and 2012. Records were collected from two EHR systems: Philips CareVue and iMD-

soft MetaVision. These data were sourced entirely from critical care units, leading
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to a relatively low percentage of documentation focusing on functioning as discussed

here.

As with the OSUMC documents, MIMIC records were originally assigned to one

of 19 broad document types (e.g., Nursing/Other). We followed the same procedure

of manual review and developing keyword-based regular expressions for filtering to

divide these into 29 topically-consistent types.

2.2.2 Methods

We analyze our three corpora along three primary axes: (1) free text analysis,

i.e. the structure and content of the free text documents themselves; (2) document

classification, experimentally assigning schema labels to previously unseen documents

using automated classifiers; and (3) a qualitative analysis of the predictions of a

current clinical NLP system and the structure of information in the documents. Each

of these axes is described in detail in the following sections.

Free text analysis

Free-text records were characterized in two different ways: lexical usage (i.e.,

vocabulary frequency) and keyword identification. Documents were tokenized using

the Stanford CoreNLP toolkit (Manning et al., 2014), configured with default settings;

these tokens were then analyzed on a per-document basis.

Lexical usage To investigate differences in vocabulary usage between schema

classes, we considered two specific questions: (1) How are words used differently in

different labels, and (2) What words are most distinctive for each label? Unlike doc-

ument length, which can be calculated and compared equally across all individual

documents, frequencies of individual vocabulary words are sparse and highly variable
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when assessed on a per-document basis. We therefore used each document’s tokeniza-

tion to count the frequency of each distinct token (word, suffix, or punctuation), and

then aggregated these frequencies within each EHR document type.

To compare vocabulary usage patterns between a pair of schema classes X and Y ,

we first compared all pairs of a document type belonging to X with a document type

belonging to Y . For each of these pairs, we calculated the Kullback-Leibler divergence

(KLD) of the normalized frequency distributions from each document type. This

yields a distribution of KLD values for the schema class pair X/Y (referred to as the

Cross-class setting).2 As neither any schema class nor individual document type is

linguistically homogeneous, we also calculate two sets of comparison statistics: the

distribution of KLD values for each document type pair within a schema class (the

Within-class setting), and the distribution of values calculated by randomly splitting

each document type in half and comparing the resulting subsets (Baselines). These

distributions were then visualized and compared using Wilcoxon’s rank-sum test.

Keyword analysis Lexical statistics describe aggregate trends in vocabulary

usage. To complement this with specific tokens most clearly indicative of each schema

class, we identified key words as follows. Let A be our target class to characterize, B

be the class or classes we wish to distinguish A from, and a sub-corpus refer to the

collection of documents belonging to A or B. For each word w in the vocabulary of the

target class A, we calculate the relative frequency of w in each sub-corpus (denoted

FwA and FwB); to control for sub-corpus size, we divide the absolute frequency of w

by the total token count of the sub-corpus. We further calculate the coverage DwA of

w in A, defined as the fraction of documents in A in which w appears at least once.

2Note that KLD is non-symmetric; thus, KLD(X/Y ) 6= KLD(Y/X). We calculated KLD values
for both directions in our analyses.
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The keyword score of word w in terms of labels A and B is then calculated as

kws(w|A,B) = DwA ∗ (FwA − FwB) (2.1)

Words will be highly scored if they are both (a) distinctly more common in one

sub-corpus than the other, and (b) present in a high proportion of documents in the

target sub-corpus. We refer to the words that maximize this score as the keywords of

class A. For each individual schema class, we compare the documents belonging to

that class to documents belonging to all other classes within the same schema (e.g.,

Therapy documents will be compared to all Medical, Ancillary, and Other documents

together). We ignored English stopwords (using the default list in the NLTK toolkit3)

and deidentification placeholders from each corpus.

Document classification

One of our motivating hypotheses is that lexical differences are sufficient to clas-

sify documents by the type of information they are most likely to describe, a valuable

first step in NLP applications for functioning information. We therefore designed doc-

ument classification experiments to make use of our extracted lexical statistics. To

determine how effectively lexical statistics served to classify previously unseen docu-

ments into schema classes, we performed classification experiments for the Domain,

Discipline, and Functional Area schemas across all three corpora.

We performed 10-fold cross-validation within each corpus, using stratified sam-

pling to ensure consistent class distributions, in order to evaluate classification of

new data from the same institution. Within each training set, we used the procedure

described in Section 2.2.2 to identify the top 100 keywords for each schema label;

3http://www.nltk.org/
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these words were then used for feature extraction in both the training and unseen

test documents.4 Our feature set for classification was the frequencies of the com-

bined keyword sets, normalized by document length. Each document was used as a

single training sample. We evaluated random forest, k-nearest neighbors (k-NN), and

support vector machine (SVM) models for classification, using default parameters as

implemented in the Scikit-learn Python toolkit (Pedregosa et al., 2011). Random

forest and k-NN are not restricted to binary classification and can accommodate all

three schema by default, by choosing the class predicted by the most decision trees

(random forest) or neighbors (k-NN); for SVM, we used one-vs-rest training for the

non-binary Discipline and Functional Area classification tasks. We calculated preci-

sion, recall, and F-1 score for each class, and report overall performance by macro

averaging across schema classes. As the outcomes of different models on the same

testing data are paired, we compared model predictions using Fisher’s exact test over

the contingency table of correct/incorrect outcomes.5

To evaluate how well differences in vocabulary usage generalized across different

institutions, we also performed cross-institution experiments. In this setting, one

entire corpus was used for keyword identification and as training data for a classifier;

the same keywords were then used (regardless of their presence or absence in the target

corpus) to extract features and classify documents from each of the other corpora.

4In contrast to popular document-level word features such as TF-IDF, which find words that make
one document distinctive from others, we use corpus-level keywords that make one class distinctive
from others across multiple documents.

5Fisher’s exact test was chosen over the more common McNemar’s test in order to support cases
where one or more cells of the contingency table has a value less than 5.
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Qualitative analysis

Our free text analyses characterize how lexical and structural properties of reha-

bilitation documents differ from standard clinical language. Document classification

experiments then investigate empirical identification of a document’s subject matter

(i.e., Domain, Discipline, and Functional Area) from lexical observations, to inves-

tigate how clearly these distinctions can be drawn on new documents. Finally, we

explore how these distinctions affect existing systems for clinical NLP, and how the

semantic and syntactic structure of functioning information differs from the concepts

historically explored in clinical NLP research.

We conducted a qualitative review of these questions on a stratified random sam-

ple of 75 documents: 60 documents from BTRIS (as the richest source of contrasting

documents) and 15 from MIMIC (for reference across corpora). BTRIS documents

broke down into 30 Functioning records (20 from the Therapy discipline, 5 from Med-

ical, and 5 from Ancillary) and 30 Diagnostic documents (24 Medical, 3 Ancillary,

and 3 Other). MIMIC records were 5 Functioning (3 Therapy records and 2 Ancil-

lary) and 10 Diagnostic (all Medical). We processed each of these documents with

the cTAKES clinical text analysis toolkit (version 3.2.2) (Savova et al., 2010), using

dictionary lookup derived from the 2016AA release of the Unified Medical Language

System (UMLS) (Bodenreider, 2004). Our lookup dictionary included the default

SNOMED CT and RxNorm vocabularies extended with the contents of the ICF and

the set of MeSH headers.

Documents were reviewed (by DNG in conjunction with two domain experts) with

an eye towards information extraction, in the form of clinical concept recognition and

normalization. The goal of the review was to describe any repeated patterns of error
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in automated outputs, and to judge how effectively automated predictions reflected

information deemed important for guiding the patient’s continuing course of care.

2.2.3 Results

For all tests of statistical significance, we used a significance value of p = 0.05 and

employed False Discovery Rate (FDR) correction (Benjamini and Hochberg, 1995;

Jones et al., 2008). Where p values are lower than the more conservative Bonferroni–

corrected threshold of p = 3.9× 10−5, we indicate with p < 3.9× 10−5; all other p

values are given explicitly.

Vocabulary usage

Looking at trends in vocabulary frequency, we find firstly that baseline distribu-

tions stay between a KLD of 0 to 0.26, indicating that the document types in each

corpus are all fairly consistent within themselves. By contrast, Figure 2.2 shows KLD

distributions for Within-class and Cross-class settings from each corpus, for the Do-

main schema (a-f) and Therapy (g-i) and Medical (j-l) classes within the Discipline

schema, as compared with the relevant baselines.

At the Domain level, we find that both Diagnostic and Functioning documents

in BTRIS have significantly lower Within-class KLD distributions than Cross-class

(p < 3.9× 10−5; Wilcoxon’s rank-sum test). In OSUMC, while Diagnostic document

types have significantly lower Within-class divergence than Cross-class with Function-

ing (p < 3.9× 10−5), Functioning document types are sufficiently varied in vocabu-

lary patterns as to yield Within-class divergences that are indistinguishable from the

Cross-class comparison (p = 0.69). MIMIC shows the reverse: its Functioning docu-

ment types are highly self-consistent, but Diagnostic document types are so diverse
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in vocabulary usage patterns (see Figure 2.2c) that Cross-class divergence patterns

are indistinguishable from Within-class (p = 0.53).

At the Discipline level, Therapy document types consistently have significantly

lower Within-class variance than Cross-class with Medical document types in all three

corpora (p < 3.9× 10−5); the same holds in reverse for BTRIS and OSUMC, while

MIMIC’s high diversity in Medical document types leads to no significant difference in

KLD distributions. However, Ancillary and Other classes, which have both fewer and

highly diverse document types, do not generally have significantly lower Within-class

KLD distributions than Cross-class (p > 0.05 in most cases). Within Functional Area

labels, small sample size makes comparison more difficult, but we find that PT, OT,

Psych, and SW typically have lower Within-class divergence than Cross-class, while

other classes are harder to distinguish from one another by doctype-level vocabulary

frequencies alone.

Vocabulary usage within the same schema class clearly varies across the three

corpora, though inter-class trends generally hold; Figure 2.3 shows distributions of

Within-class KLD values when comparing BTRIS doctypes to one another and to

doctypes from OSUMC and MIMIC. Both BTRIS and OSUMC exhibit significantly

lower internal Within-class divergence than when compared with MIMIC at the Do-

main level (p < 3.9× 10−5), though the extreme diversity of Diagnostic document

types in MIMIC means that the reverse does not hold (p = 0.62 comparing with OS-

UMC, p = 0.3 with BTRIS). Interestingly, Within-class divergence within OSUMC

at the Domain level is indistinguishable from cross-corpus divergence with BTRIS

(p = 0.76 for Diagnostic, p = 0.65 for Functioning), though BTRIS itself has signifi-

cantly lower internal divergence than cross-corpus with OSUMC (p < 3.9× 10−5).
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At the Discipline level, the trends are broadly similar to those described above,

with Therapy being significantly different between all three corpora, except for com-

paring internal consistency in OSUMC to cross-corpus consistency with BTRIS (p =

0.11). Medical is significantly more internally consistent in BTRIS than when com-

pared with OSUMC and MIMIC, and OSUMC is significantly more internally consis-

tent than when compared with MIMIC (p < 3.9× 10−5); however, OSUMC internal

consistency is indistinguishable from cross-corpus with BTRIS (p = 0.62), and MIMIC

is indistinguishable from either (p = 0.46 with OSUMC, p = 0.17 with BTRIS). An-

cillary and Other are indistinguishable internally vs between corpora (p > 0.05 in all

cases). At the Functional Area level, PT and OT in BTRIS can be distinguished

from OSUMC and MIMIC (p < 3.9× 10−5), but other cross-corpus comparisons are

largely indistinguishable.

Keyword analysis

Table 2.3 lists the top five keywords identified for each Domain and Discipline

class in the three corpora studied. While no class is consistent across corpora, the

Domain-level distinction between physiological condition and medication in Diag-

nostic language (e.g., “blood,” “oral”) and more holistic assessments in Functioning

language (e.g., “therapy,” “social”) is clear. Keywords from the Domain level largely

carry into the Discipline level for Medical and Therapy due to the high overlap of

document types across schemas. However, Ancillary keywords reflect the diversity of

support services included in this class, and Other keywords clearly reflect the different

institution-specific uses of this class (research protocols and consent forms in BTRIS,

telephone contacts in OSUMC, and family meetings in MIMIC). Notably, while most

identified keywords are highly informative, we observe some spurious words, such as
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“signatures” and “authored” in BTRIS Functioning documents. These emerge due

to documentation practices specific to originating departments or specialties (here,

several areas that include electronic signatures on most EHR documents), which are

therefore highly indicative of the overall schema label; this is discussed further in

Section 2.2.4.

Document classification

Table 2.4 shows F-1 scores from the ten-fold cross-validation experiments within

each corpus. K-nearest neighbors classification significantly outperforms both ran-

dom forest and SVM models for the Domain and Discipline schemas in each cor-

pus (p < 3.9× 10−5; Fisher’s exact test). In the Functional Area schema, SVM ex-

hibits significantly higher F-1 score than random forest and k-NN (p < 3.9× 10−5)

for BTRIS and MIMIC, due to higher per-class recall. k-nearest neighbors performs

most consistently, achieving above 90% F-1 score in all cases except Discipline-level

classification in OSUMC.

In the cross-corpus setting, however, classifier performance is much less consistent,

and overall scores drop significantly. We analyzed F-1 scores with each model for each

schema, over each of our 6 cross-corpus settings. Out of these 18 total comparisons,

random forest is best in 4, k-NN in 5, and SVM the remaining 9. Taking SVM as

the overall best model in order to examine performance in more detail, Table 2.5

shows that recall falls precipitously when a classifier trained on OSUMC or MIMIC is

evaluated on the more diverse BTRIS data, with precision decreasing as the number

of possible classes increases. Evaluating on OSUMC and MIMIC, corpus specificity

of classification is even clearer, with all three metrics falling below 0.5 in most
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Figure 2.2: K-L divergences of vocabulary distributions between document types,
by schema class. Baselines (BL) show KLD distribution for comparing documents
within the same document type; Within-class compares document types within the
same schema class to one another (e.g. “D” in (a) is comparing Diagnostic types);
Cross-class compares document types from one schema class to types from another
(e.g. “T/M” is Therapy vs Medical types). (a)-(c) shows distributions for Diagnostic
(D) types within the Domain schema, and (d)-(f) shows Functioning (F) distributions
(note that KLD is asymmetric). (g)-(i) show distributions for Medical (M) and (j)-(l)
for Therapy (T), both in the Discipline schema; Ancillary (A) and Other (O) are
omitted for brevity.
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Figure 2.2: K-L divergences of vocabulary distributions between document types,
by schema class. Baselines (BL) show KLD distribution for comparing documents
within the same document type; Within-class compares document types within the
same schema class to one another (e.g. “D” in (a) is comparing Diagnostic types);
Cross-class compares document types from one schema class to types from another
(e.g. “T/M” is Therapy vs Medical types). (a)-(c) shows distributions for Diagnostic
(D) types within the Domain schema, and (d)-(f) shows Functioning (F) distributions
(note that KLD is asymmetric). (g)-(i) show distributions for Medical (M) and (j)-(l)
for Therapy (T), both in the Discipline schema; Ancillary (A) and Other (O) are
omitted for brevity.
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Figure 2.3: Distributions of K-L divergence values for document type pairs within the
same schema classes, within BTRIS alone (gold plots on the left of each triad) and com-
paring doctypes from BTRIS to doctypes from OSUMC (blue middle plots) and MIMIC
(brown plots on right). All significance tests were conducted using Wilcoxon’s rank-sum
statistic. (a) BTRIS has significantly higher Within-class divergence from OSUMC and
MIMIC than within itself, for both classes (p < 3.9× 10−5). (b) BTRIS has significantly
higher Within-class divergence from OSUMC and MIMIC for Therapy and Medical classes
(p < 3.9× 10−5), but no significant difference for Ancillary (p = 0.36 for OSUMC, p = 0.64
for MIMIC) or Other (p = 0.35 for OSUMC, p = 0.64 for MIMIC) classes. (c) BTRIS
has significantly higher Within-class divergence from OSUMC and MIMIC on PT and OT
classes (p < 3.9× 10−5), and from OSUMC on RT (p = 5.8× 10−5; MIMIC has no RT
data). Neither OSUMC nor MIMIC have data for the Neuro Functional Area class.
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Figure 2.4: Precision and recall for cross-corpus document classification experiments,
by schema class. All results reported using SVM classification. Each graph represents
testing a specific schema (labeled by row) on a specific corpus (labeled by column),
and each colored bar denotes a training corpus. In cases where training and testing
are on the same corpus (labeled Self), results are given from ten-fold cross-validation
experiments.
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Discipline and Functional Area settings. Figure 2.4 clarifies these decreases at the

schema class level: precision often decreases slightly for the majority class, while re-

call falls near zero for rarer classes, reflecting the prevalence of the majority class.

Noticeably, while recall does tend to decrease for rarer classes compared to the major-

ity class in the within-corpus cross-validation setting, it remains significantly higher

than the cross-corpus performance.

Qualitative analysis

Recognizing key concepts

When it comes to recognizing clinically-relevant pieces of information in reha-

bilitation text, however, current methods exhibit several distinct points of failure.

Most straightforwardly, some of the relevant concepts are simply not encoded at

all in the controlled vocabularies available through the UMLS, itself a very high-

coverage resource for biomedical vocabulary.6 For example, “Patient is an active

gentleman” refers to being active in the sense of lifestyle, but available UMLS senses

involve medications and biologically active substances. Similarly, the physical therapy

evaluation procedure “balance testing” was not found in the UMLS, and “liquid”

as a physical state of food in speech-language pathology evaluation is not directly

encoded (though related concepts such as liquid diet are present). Beyond those con-

cepts which are missing entirely, however, a number of relevant concepts are present

in controlled vocabularies that were not included in our cTAKES dictionary, such as

LOINC and terms from HL7 standards. For example, concepts such as “hiking” and

“stationary bike” were not present in our dictionary subset, but can be found in

6UMLS searches in this section were performed using the National Library of Medicine’s only
search interface at https://uts.nlm.nih.gov/metathesaurus.html, using the 2016AA release of
UMLS.
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various controlled vocabularies indexed in the UMLS. In addition, some terms have

multiple senses in different vocabularies: for example, “depression” is encoded as a

disorder in DSM-IV, but as an anatomical term in SNOMED, leading to “history of

dysthymia and depression” being tagged with an anatomical site descriptor and

no disease/disorder concepts. Thus, for processing rehabilitation documents, it is

necessary to expand beyond the default vocabularies to incorporate a broader set of

known terms.

It is also necessary to adjust matching and disambiguation procedures to bet-

ter reflect the distributional characteristics of the rehabilitation sublanguage. Some

clinically-relevant concepts in the text were present in the vocabularies included in

our cTAKES dictionary, but were not annotated by the full text processing pipeline.

For example, “standing position” (of a patient) is included in the ICF, but was not

included in the final annotations. Other concepts were annotated, but with senses

biased towards diagnostic applications: for example, “plan” (e.g., of care) was re-

peatedly marked only as a reference to infantile neuroaxonal dystrophy (PLAN is an

acronym for PLA2G6-Associated Neurodegeneration, the overall name for this type

of degenerative disorder), and “bed” (as a location or device) was annotated as an

acronym referring to Bornholm eye disease, despite being included with the correct

sense in SNOMED CT and MeSH. As previously observed by Walker and Amsler

(Walker and Amsler, 1986) and Pustejovsky et al. (Pustejovsky et al., 1993), multi-

sense dictionaries can be effectively combined with knowledge and statistics about a

specific sublanguage to tailor disambiguation methods to the domain of interest; such

a combination could likely address many of the errors described here.
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Structure of functioning information

Functioning is defined in terms of the interaction of various components of a

person’s health status and life: activities, environment, health condition, etc. This

complex nature results in two distinct linguistic challenges for extracting functioning

information from text. The first issue is syntactic complexity: as multiple components

are involved in describing a single observation, this information cannot be conveyed

in single noun phrases or verbs. Prepositional attachment to specify a situation

is common, as in “daily walks with distance less than typical.” It is also

often necessary to use a full predicate structure such as an embedded clause or a

complete sentence to express a functioning observation, as in “Patient is unsafe

to go home at this time.” Here, multiple components can be identified in the

observation: the unsafe status of the patient, the situation with respect to which the

patient is unsafe (“go home”), and a temporal bound on the information (“at this

time”).

Such complex structures are by no means uncommon in diagnostic and cura-

tive observations: for example, “Crohn’s disease and acute back pain which

is improved with hydration” is a representative observation from our documents.

However, this latter example can be considered a conjunction of multiple findings,

each of which can stand on its own: (1) Crohn’s disease, (2) acute back pain, and

(3) back pain improving with hydration. By contrast, “daily walks with distance

less than typical” and “ambulates across his yard without assistance” are

more atomic: a reference to daily walks conveys little information without an obser-

vation of distance, and the patient’s ambulation must be contextualized with the
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environment (e.g., yard, hallway) and level of independence (e.g., without assis-

tance, with rolling walker) to be informative. As a corollary observation, we also

noted several instances of anaphora in functioning observations, often being used

to provide more specific context: “walking with gait aid and doing stairs,

two of which are required to enter apartment building” being an example

(anaphora underlined).

The second major challenge is that of implicit information. In several cases, we

observed important functioning concepts being described in terms of a specific appli-

cation or life situation, without explicitly referring to the elements of functioning in-

volved. For example, saying of a patient that he “crosses his grassy yard to get

out into the community” indicates that (a) the patient can ambulate with some de-

gree of independence, (b) he can do so across a rough surface such as grass, and (c)

the action has a further participatory purpose, i.e. getting “out into the community.”

Similar statements can be made about “she can manage IV pole independently,”

which presupposes manual dexterity and coordination of the IV pole and self ambu-

lation, and “Wii games utilized from standing position,” which implies some

degree of arm mobility and fine motor control. This has some similarities to the in-

vestigation of incorporating commonsense knowledge into automated systems (Zellers

et al., 2018), though it is more focused on domain-specific knowledge of the associa-

tions between activities and their components.
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2.2.4 Discussion

We have analyzed rehabilitation medicine documents and contrasted them with

records from diagnostic and curative encounters in terms of vocabulary usage, automatically-

identified keywords, and document length. Empirical results show that clinical docu-

ments can be effectively distinguished from one another by keyword frequency alone at

various levels of topical classification, and that these results hold between documents

from different institutions. Finally, review of predictions made by an automated clin-

ical language processing system identified several distinct challenges in rehabilitation

documents, and suggests new formulations for better understanding the language of

rehabilitation medicine and the related language of functioning information. Sev-

eral intriguing results have emerged from our observations, as have limitations of our

current methodology. We discuss four areas of these findings in the following sections.

Assigning schema classes at the document type level is noisy

While we see clear distinctions between schema classes in our analyses, not all doc-

types fit cleanly into only one schema class. Some document types, such as Discharge

Summary, may be used for patients seen for either primarily diagnostic or primarily

rehabilitative concerns, and others, such as History & Physical, may occasionally in-

clude individual pieces of functioning information within a larger weight of diagnostic

information. While our heuristic filtering of OSUMC and MIMIC document types ac-

counted for some of this variation, our assignment of schema labels was chosen based

on the predominant topics discussed in the majority of documents of a given type,

and classification experiments reflect this. Given the diverse nature of functioning

information and the diversity of other health-related information it may accompany,
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investigating the presence of functioning information independent of document type

or overall topic would be a valuable followup to our initial study.

It is also important to note that while rehabilitation medicine is a rich source of

functioning information, it is not the only source. Functioning is a broad concept with

relevance to curative and preventive health strategies as well. Additionally, though

rehabilitation is largely concerned with functioning, diagnostic and other types of

medical concepts are by no means excluded. This study draws on documentation of

rehabilitation encounters to provide an initial characterization of functioning informa-

tion language, which can lay the groundwork for a broader investigation of functioning

information in other disciplines.

Lexical frequency is an informative piece of a larger picture

Vocabulary frequency provides clear and easily-understood guideposts in analyz-

ing the language used in rehabilitation documents, and empirical classification re-

sults demonstrate that it is sufficient information to separate schema classes with

high accuracy. We also found an unexpected potential use of our keyword anal-

ysis: identifying institutional stopwords within different domains. The keywords

shown in Table 2.3 are overall quite informative, but include some examples of non–

content-bearing words that are nonetheless indicative of schema label due to differing

documentation practices within various departments. For example, as discussed in

Section 2.2.3, keywords identified for the Therapy discipline in BTRIS (such as “up-

dated,” “authored,” and “signatures”) were related to electronic signatures, as many

of the specialties where these notes originated included this information in every doc-

ument as standard practice. Thus, expert review of suggested keywords can also
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be used to identify department– or note-type–specific stopwords that do not carry

content about the care provided to the patient.

However, given the complex nature of functioning information, word-based analy-

sis either at the frequency or topic levels has limitations for discovering representative

linguistic forms. Firstly, some words or sets of words may be used equally often, but

for different purposes, within different classes and document types. Figure 2.5 shows

a t-SNE (Van Der Maaten and Hinton, 2008) visualization7 of a randomly-selected

set of BTRIS documents with Discipline labels, based on the frequencies of identified

keywords. Although our classification experiments demonstrate that these document

classes are clearly separable using all available keywords, visualization suggests that

the classes remain more intermixed than we might expect. This agrees with our obser-

vation that some keywords within the Discipline and Functional Area schemas were

shared between classes, though remaining distinctive when compared to the corpus

as a whole.

Secondly, as discussed in Section 2.2.3, individual observations of functioning gen-

erally incorporate multiple components. This structure is difficult to capture from a

word-based or even co-occurrence–based approach. However, early work on sublan-

guage analysis (see (Marsh, 1986; Friedman, 1986), inter alia) takes a grammar-based

approach, using syntactic structure and/or semantic frames to represent the individ-

ual elements of a message and how they relate to one another. Thieu et al. (2017)

describe a structured approach in this vein to modeling observations of patient mobil-

ity, though they favor semantic type restrictions over syntactic categories. Analysis

7We used the t-SNE implementation in scikit-learn for projection.
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Figure 2.5: t-SNE visualization of keyword features for BTRIS documents by Disci-
pline class (100 from each class). Each document is originally represented as a vector
of real-valued relative frequencies for each of keywords identified for every Discipline
class using the full BTRIS corpus, and this set of points is projected to 2 dimensions
for plotting. Axes in t-SNE visualizations have no specific meaning and are omitted.

of the distributional properties of functioning information thus represents a promis-

ing avenue for identifying more general structures for representing descriptions of

functioning information in practical use.

A centralized terminology for functioning information is critical

Setting aside the challenges of modeling the structure of functioning informa-

tion, we observed several issues in finding coverage of its components in controlled

terminologies. Many of the relevant terms we identified were present in controlled vo-

cabularies in the UMLS, but were sparsely distributed: some terms could be found in

LOINC, others in vocabularies associated with HL7 standards, MEDCIN, the Nurs-

ing Outcomes Classification, and more. While a greater coverage could be achieved
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by simply including all available vocabularies as potential sources for searching for

functioning terms, this also increases the likelihood of finding spurious word senses

(such as Bornholm eye disease for “bed”). A more desirable solution to this issue

would be to develop a centralized resource of functioning terminology, connecting

relevant terms (and relevant senses of ambiguous terms) from disparate vocabularies

in a single reference.

Although coverage in these various vocabularies is not complete, as observed in

Section 2.2.3, many of these terms are to some extent already connected through

the UMLS Metathesaurus. However, the underlying ontological structure for func-

tioning concepts to make these connections direct and intuitive is currently lacking.

The ICF can provide some basis for this ontological structure, but its applicability

to representing concepts of functioning (as opposed to its intended purpose of clas-

sifying individual observations) is limited. Heerkens et al. (2018) describe several

related criticisms of the ICF in practice, including its focus on health condition over

bio-psycho-social perspectives and the ambiguity of its concepts. We also note that

relationships between concepts, such as an activity (e.g., sitting, feeding oneself) and

specific elements of the environment involved (e.g., bed, chair, kitchen) are difficult

to encode using the ICF alone. An extended ontological structure to support rep-

resenting all elements of functioning at a more theoretical level would enable more

powerful structured analysis of functioning information in practice.

Sublanguage through the lens of institutions and disciplines

Finally, we note two major sources of variability in our sublanguage analysis. The

first is the originating institution: we observed significant variance in the language

used by the three different institutions we studied; in several cases these differences
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were larger than the differences between schema labels within each institution. This

aligns with the observations of Carrell et al. (Carrell et al., 2017) regarding idiosyn-

crasies and variable report structures between institutions. This can be considered

an exogenous factor that should be eliminated in a robust characterization of a reha-

bilitation and/or functioning information sublanguage. Such variation can easily be

controlled for by restricting analysis to documents from a single institution, but the

significant decrease we observe in document classification results when applying one

institution’s model to another’s data clearly indicates the limitations of this approach.

A more lasting, though also more challenging, approach to fix this issue is to more

regularly include data from multiple institutions in clinical NLP analysis, a proposal

which has recently seen significant attention (Ohno-Machado, 2018).

On the other hand, our analyses at the Functional Area level show clear distinc-

tions between the language used by different specialties, even within rehabilitation

medicine. This is to be expected—especially at the vocabulary level—given the dif-

ferent foci of each specialty, and represents an important aspect of our sublanguage

analysis. Sublanguages are not mutually exclusive, and can often be analyzed in a

hierarchical structure (Marsh, 1986) or even as overlapping items in the same level

of a hierarchy (Kittredge and Lehrberger, 1982). The sublanguage of rehabilitation,

along with its sibling sublanguage of functioning information, is a subdivision of the

broader clinical sublanguage described by Friedman et al. (Friedman et al., 2002),

itself a subdivision of the biomedical domain. Thus, it is important when providing

further characterization of these sublanguages to ensure that the diverse specialties

within a broader domain are represented appropriately, in order to most effectively

capture the linguistic trends within the overall domain.
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2.2.5 Conclusions

Our work clearly demonstrates that EHR documents from rehabilitation medicine

are a valuable text genre for dedicated computational linguistic analysis. The termi-

nology used in these documents is highly distinctive compared to documents that have

formed the primary focus of research efforts in clinical NLP. We have illustrated sev-

eral ways in which existing methods for clinical NLP fail to extract clinically-relevant

information from rehabilitation documents. This work provides a corpus-level char-

acterization of rehabilitation notes as a distinct text type across multiple institutions,

and describes indicative vocabulary and information structure features of rehabilita-

tion documents.

In addition, we have described initial linguistic characteristics of functioning infor-

mation, a critical type of healthcare information for global health systems in accom-

modating the needs of aging populations and people with disabilities. This represents

a valuable first step towards using natural language processing to automatically ex-

tract and analyze this information within learning health systems. Furthermore, we

have identified clear next steps for improving our understanding of functioning in-

formation, including studying its prevalence and syntactic and semantic structure

within diverse types of healthcare texts, and developing centralized terminological

and ontological resources for representing and structuring clinical concepts involved

in functioning information.
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2.3 Contributions of this thesis towards processing FSI

Whole-person function, as embodied by activity and participation, is a strong

predictor of mortality, disability, employment, and resource utilization. Standard-

ized and accessible functional status information will provide valuable knowledge to

support holistic and patient-centered care, and to improve the efficiency and effec-

tiveness of health care delivery, management, and planning. We have demonstrated

that rehabilitation medicine, a family of healthcare disciplines focusing on optimizing

function, exhibits a distinct sublanguage within the clinical domain, utilizing distinct

vocabulary and a complex structure of function-related information.

The remainder of this thesis describes how representation learning techniques can

help to address both general challenges in clinical NLP, outlined in the next chapter,

and the specific challenges of processing FSI. We demonstrate that representation

learning methods can capture concept usage patterns within restricted domains, and

provide the flexibility to perform high-coverage extraction of functional status infor-

mation from heterogeneous EHR data.
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Chapter 3: Characteristics of Clinical Language to Capture

with Representation Learning

Clinical language exhibits distinct features that play an important role when pro-

cessing any clinical documents, particularly the heterogeneous data in which func-

tional status information is found. This chapter provides a brief overview of two

significant issues in clinical text relevant to this thesis: the telegraphic nature of writ-

ten clinical language, and diverse types of conceptual ambiguity resulting from the

complexities of biomedical knowledge.8

3.1 Clinical language is telegraphic

One of the key aspects highlighted by Friedman et al. (2002) in their character-

ization the sublanguages of clinical text and biomedical literature is the the lack of

grammatical well-formedness in the clinical sublanguage. Self-contained utterances

may consist of noun phrases only, and the rich metadata associated with EHR doc-

uments (such as the department where a document was written) mean that semanti-

cally significant information may be omitted. In addition, clinical language exhibits

a wide variety of semi-structured templates, such as “slot:value” pairs, which often

vary based on document section (Divita et al., 2014).

8Portions of Section 3.2 have been submitted for publication and are currently under review.
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3.1.1 Implications for FSI

For functional status information, which involves the interaction of multiple con-

cepts, this poses two primary challenges. First, the inherent productivity of natural

language is compounded by the syntactic flexibility of clinical language to yield a

wide variety of ways to present functional interaction information: for example, “Pt

ambulates 300’ in clinic with rolling walker” and “Ambulation: 4” (with

an implied standardized scale) may express substantively equivalent information. Sec-

ond, the syntactic complexity of FSI activity reports requires reliable syntactic pars-

ing to fully leverage domain knowledge: for “Pt ambulates 300’ in clinic with

rolling walker”, identifying the verb and prepositional phrases is highly informa-

tive for identifying the action being performed and the level of assistance required.

One element of the telegraphic nature of clinical text explored in our earlier work

is segmentation of a document into “sentences” (i.e., self-contained segments treatable

as a complete utterance). In Griffis et al. (2016), we demonstrated that sentence seg-

mentation in clinical document requires very different operational expectations than

other domains, including spoken language. We found that off-the-shelf non-clinical

sentence segmentation models performed well on newswire and literature data but

consistently mis-segmented clinical text, while the reverse was true for a clinical sen-

tence segmentation model. However, the length of activity reports, and the frequent

presence of punctuation marks, provides an increased number of over-segmentation

opportunities for clinical text segmentation methods, which we previously observed to

be somewhat over-eager to segment multiple sentences where no breaks are intended

(Griffis et al., 2016). Empirical study of the impact of sentence segmentation algo-

rithms on FSI extraction, as well as the utility of clinical syntactic parsing methods,
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will better flesh out the need for further adapting these NLP fundamentals to the FSI

domain.

3.2 Clinical language exhibits distinct types of ambiguity in
references to medical concepts

At a semantic level, identifying the medical concepts within a document is a

key step in analysis of medical records and literature. Mapping natural language to

standardized concepts improves interoperability in document analysis (Rosenbloom

et al., 2011; Jovanović and Bagheri, 2017) and provides the ability to leverage rich,

concept-based knowledge resources such as the Unified Medical Language System

(UMLS) (Bodenreider, 2004). This process is a fundamental component of diverse

biomedical applications, including clinical trial recruitment (Wu et al., 2018; Weng

and Embi, 2019), disease research and precision medicine (Gonzalez et al., 2016;

Köhler et al., 2017; Lever et al., 2019), pharmacovigilance and drug repurposing (Ben

Abacha et al., 2015; Himmelstein et al., 2017), and clinical decision support (Al-

Hablani, 2017). In this work, we identify distinct phenomena leading to ambiguity in

Medical Concept Normalization (MCN), and describe key gaps in current approaches

and data for normalizing ambiguous clinical language.

Medical concept extraction has two components: (1) Named Entity Recognition

(NER), the task of recognizing where concepts are mentioned in the text, and (2)

Medical Concept Normalization (MCN), the task of assigning canonical identifiers to

concept mentions, in order to unify different ways of referring to the same concept.

While MCN has frequently been studied jointly with NER (Savova et al., 2010; Soysal

et al., 2018; Elhadad et al., 2015), recent research has begun to investigate challenges

specific to the normalization phase of concept extraction.
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Three broad challenges emerge in normalization. First, language is productive:

practitioners and patients can refer to standardized concepts in diverse ways, requiring

recognition of novel phrases beyond those in controlled vocabularies (Elkin et al., 2006;

He et al., 2017; Kuang et al., 2015). Second, a single phrase can describe multiple

concepts in a way that is more (or different) than the sum of its parts (Osborne et al.,

2018; Doğan et al., 2014). Finally, a single natural language form can be used to refer

to multiple distinct concepts, yielding ambiguity.

Word sense disambiguation (WSD; which often includes phrase disambiguation in

the biomedical setting) is thus an integral part of MCN. WSD has been extensively

studied in natural language processing methodology (Ide and Veronis, 1998; Navigli,

2009; Raganato et al., 2017a), and ambiguous words and phrases in biomedical liter-

ature have been the focus of significant research (Weeber et al., 2001; Savova et al.,

2008; Stevenson et al., 2011; Jimeno-Yepes et al., 2011; Jimeno-Yepes, 2017; Char-

bonnier and Wartena, 2018; Pesaranghader et al., 2019). WSD research in Electronic

Health Record (EHR) text, however, has focused almost exclusively on abbreviations

and acronyms (Moon et al., 2014; Mowery et al., 2016; Wu et al., 2017; Oleynik et al.,

2017; Joopudi et al., 2018). A single dataset of 50 ambiguous strings in EHR data

has been developed and studied (Savova et al., 2008; Chasin et al., 2014), but is

not freely available for current research. Two large-scale EHR datasets, the ShARe

corpus (Elhadad et al., 2015) and MCN (Luo et al., 2019), have been developed for

medical concept extraction research, and have been significant drivers in MCN re-

search through multiple shared tasks (Elhadad et al., 2015; Pradhan et al., 2015,

2014; Mowery et al., 2014; Uzuner et al., 2019). However, their role in addressing

ambiguity in clinical language has not yet been explored.
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Objective

To understand the role of benchmark MCN datasets in designing and evaluating

methods to resolve ambiguity in clinical language, we identified ambiguous strings

in the ShARe corpus and MCN and analyzed the causes of ambiguity they capture.

Using lexical semantic theory and the design of the UMLS as a guide, we developed

a typology of ambiguity in clinical language and categorized each string in terms

of what type of ambiguity it captures. We found that multiple distinct phenomena

cause ambiguity in clinical language, and that the existing datasets are not sufficient

to systematically capture these phenomena. Based on our findings, we identified

three key gaps in current approaches to MCN, which we hope will spur additional

development of tools and resources for resolving medical concept ambiguity.

3.2.1 Background and significance

Linguistic phenomena underpinning clinical ambiguity

Lexical semantics distinguishes between two types of lexical ambiguity: homonymy

and polysemy (Cruse, 2004; Murphy, 2010). Homonymy occurs when two lexical items

with separate meanings have the same form (e.g., “bank” as reference to financial in-

stitution or river bank). Polysemy occurs when one lexical item diverges into distinct,

but related meanings (e.g., “coat” for garment or coat of paint). Polysemy can in

turn be the result of different phenomena, including default interpretations (“drink”

liquid or alcohol), metaphors, and metonymy (usage of a literal association between

two concepts in a specified domain, e.g., “The ham sandwich wants his coffee now,”

uttered in a café setting) (Cruse, 2004; Murphy, 2010). While metaphors are dis-

preferred in the formal setting of clinical documentation, the telegraphic nature of
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medical text (Friedman et al., 2002) lends itself to metonymy by using shorter phrases

to refer to more specific concepts, such as procedures (Rindflesch and Aronson, 1994).

Sense relations and ontological distinctions in the UMLS

The UMLS Metathesaurus assigns Concept Unique Identifiers (CUIs) to synony-

mous lexical items in the medical domain. The semantic relations in the UMLS

include taxonomic sense relations that are reflected in lexical phenomena such as hy-

pernymy and hyponymy, as well as meronymy/holonymy in biological and chemical

structures (Cruse, 2004). The UMLS has previously been observed to include not

only fine-grained ontological distinctions, but also purely epistemological distinctions

such as the same disorder resulting from different causes (Bodenreider et al., 2004).

This yields high productivity for assignment of different CUIs in cases of ontological

distinction, such as “cancer” referring to either general cancer disorders or a specific

type in a context such as a prostate exam, as well what Cruse terms propositional

synonymy, i.e., different senses which yield the same propositional logic interpreta-

tion (Cruse, 2004). Additionally, the difficulty of inter-terminology mapping at scale

means that occasional synonyms are assigned different CUIs (Fung et al., 2007).

The role of representative data for clinical ambiguity

Development and evaluation of models for any problem is predicated on the avail-

ability of representative data (Borovicka et al., 2012). Prior research has highlighted

the frequency of ambiguity in biomedical literature (Weeber et al., 2001; Schuemie

et al., 2005) and broken biomedical ambiguity into three broad categories of am-

biguous terms, abbreviations, and gene names (Stevenson and Guo, 2010), but an

in-depth characterization of the types of ambiguity relevant to clinical data has not
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ShARe Corpus MCN Corpus

SemEval-2014 Task 7 CUILESS2016 n2c2 2019 Track 3

Training Test Combined Training Dev Combined Training

UMLS Version 2011AA 2016AA 2017AB

Source
Vocabularies

SNOMED-CT (US) SNOMED-CT (US)
SNOMED-CT (US),

RxNorm

Samples 11,554 8,003 19,557 3,468 1,929 5,397 6,684

Unique Strings 3,654 2,477 5,064 1,519 750 2,011 3,230

Unique CUIs 1,356 1,144 1,871 1,384 639 1,738 2,331

Table 3.1: Details of MCN datasets analyzed for ambiguity, broken down by data
subset.

yet been performed. In order to understand what can be learned from the available

data for ambiguity and identify areas for future research, it is critical to analyze both

the frequency and the types of ambiguity that are captured in clinical datasets.

3.2.2 Materials and methods

Data

The effect of ambiguity in normalizing medical concepts has been researched sig-

nificantly more in biomedical literature than in clinical data. In order to identify

knowledge gaps and key directions for MCN in the clinical setting, where ambiguity

may have direct impact on automated tools for clinical decision support, we studied

both of the available English-language corpora with concept normalization annota-

tions: the ShARe corpus (Elhadad et al., 2015) and MCN (Luo et al., 2019). Details

of these datasets are presented in Table 3.1.
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ShARe corpus

The ShARe corpus consists of 531 clinical documents from the MIMIC dataset

(Johnson et al., 2016), including discharge summaries, echocardiogram, electrocardio-

gram and radiology reports. Each document has been annotated for mentions of dis-

orders and normalized to CUIs from SNOMED-CT (Elhadad et al., 2012). The docu-

ments were annotated by two professional medical coders, with high Inter-Annotator

Agreement (IAA) of 84.6% CUI matches for mentions with identical spans, and all

disagreements were adjudicated to produce the final dataset (Pradhan et al., 2015,

2014). Datasets derived from the ShARe corpus have been used as the source for

several shared tasks (Pradhan et al., 2013, 2014; Mowery et al., 2014; Elhadad et al.,

2015).

SemEval-2014 Task 7 : We analyze the subset of 431 documents used for a SemEval-

2014 shared task on clinical text analysis9 (298 training documents, 133 test) (Prad-

han et al., 2014), and used as the training set for a following shared task at SemEval-

2015, with the remaining 100 corpus documents used for testing (Elhadad et al.,

2015). As the SemEval-2015 data is the current version of the corpus, we exclude its

100 test documents from our analysis to preserve their utility as a test set.

CUILESS2016 : A significant number of mentions in the ShARe corpus were not

assigned a CUI in the original annotations, due either to the appropriate CUI not

belonging to the Disorder semantic group in the UMLS or due to compositional men-

tions requiring multiple CUIs (Elhadad et al., 2015). These mentions were later

re-annotated as the CUILESS2016 dataset, with updated guidelines allowing annota-

tion with any CUI in SNOMED-CT (regardless of semantic type) and specified rules

9We analyze Track B of the task, focusing on disorder normalization.
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for composition (Osborne, 2015; Osborne et al., 2018). These data were split into

training and development sets, corresponding to the SemEval-2014 split; the test set

from SemEval-2015 was not included in the CUILESS2016 annotations. We follow the

same protocol of analyzing the training, development and combined sets separately.

MCN corpus

As the ShARe corpus only provides normalization for mentions of disorder-related

concepts, Luo et al. created the MCN corpus to provide mention and normalization

data for a wider variety of concepts (Luo et al., 2019). It is derived from the 2010

i2b2/VA shared task on clinical concept extraction, for which documents from multi-

ple healthcare institutions were annotated for all mentions of problems, treatments,

and tests (Uzuner et al., 2011). MCN includes 100 of its discharge summaries, with all

annotations normalized to CUIs from SNOMED-CT and RxNorm; 2.7% were anno-

tated as “CUI-less”. All mentions were dually-annotated with an adjudication phase;

pre-adjudication IAA was 67.69% CUI match.

n2c2 2019 : The corpus was split into training and test sets, and used for a recent

n2c2 shared task on concept normalization (Uzuner et al., 2019). Again, we only

analyzed the training set to preserve the utility of the n2c2 test set.

Defining ambiguity

We define ambiguity of a string in two ways: the number of senses a given string

can take in general, and the number of senses observed for that string in a finite

dataset. Sense inventories such as WordNet (Fellbaum, 1998) or the UMLS Metathe-

saurus offer a heuristic to measure the former, with the recognition that such inven-

tories may have incomplete coverage of senses (Elkin et al., 2006; Travers and Haas,

2006; ShafieiBavani et al., 2016). The degree to which the sample of ambiguity in
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Figure 3.1: Examples of mismatch between medical concept mention string (bold
underlined text) and assigned CUI (shown under the mention), due to coreference (A)
and predication (B). The right side of each subfigure shows the results of querying
the UMLS for the mention string with exact match (top) and the preferred string for
the annotated CUI (bottom).

a given dataset is representative of this underlying ambiguity informs the power of

statistical models (and their evaluation) to capture the “true” set of senses in the

inventory.

While there has been significant work on improving the coverage of synonyms in

the UMLS, the breadth and specificity of concepts covered means that useful string-

CUI links are often missing (Lang et al., 2017). This is exacerbated by linguistic

phenomena such as coreference, allowing seemingly general strings to take very specific

meanings, and predication, splitting known strings with a copula (see Figure 3.1 for

examples). We therefore measure the ambiguity of medical concept strings in terms

of the UMLS from three sources:

• Dataset ambiguity – the number of unique CUIs associated with a string in a

given dataset.
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• Exact UMLS ambiguity – the number of unique CUIs canonically associated

with the string in the MRCONSO table of the UMLS, filtered to dataset vo-

cabularies.

• Approximate UMLS ambiguity – the number of unique CUIs returned when

querying the UMLS search API for the string, using word search, filtered to

dataset vocabularies.

We also evaluated the coverage of the UMLS search results, in terms of whether

they included the CUIs associated with each string in the dataset. As a “CUI-less”

result cannot be returned from the UMLS, we excluded all strings with any “CUI-

less” annotations; for compositional annotations in CUILESS2016, we treated a label

as covered if any of its component CUIs were included in the UMLS results.

Preprocessing

We normalized both the annotated mention strings and the strings in MRCONSO

for ambiguity calculation by lowercasing all characters and dropping determiners. We

did not apply lemmatization, as initial experiments empirically combined strings and

contexts that we deemed too disjoint.

Analysis of ambiguous strings

Inspired by methodological research demonstrating that different modeling strate-

gies are appropriate for phenomena such as metonymy (Markert and Nissim, 2009;

Gritta et al., 2017) and hyponymy (Banerjee and Pedersen, 2002; Patwardhan et al.,

2003; Navigli and Velardi, 2005; Navigli and Lapata, 2010; Mavroeidis et al., 2005),

we analyzed the ambiguous strings in each dataset in terms of the following lexical

phenomena: homonymy, polysemy, hyponymy, meronymy, co-taxonomy (sibling rela-

tionships), and metonymy (Cruse, 2004; Murphy, 2010). To measure the ambiguity
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captured by the available annotations, we performed our analysis only at the level

of dataset ambiguity–i.e., only using the CUIs associated with the string in a single

dataset. For each string and its CUIs, we answered the following two questions:

What kind of relationship holds between the CUIs associated with this string? This

question regarded only the set of annotated CUIs, and was agnostic to specific samples

in the dataset. We evaluated two aspects of this relationship: which (if any) of the

above lexical phenomena was most representative of the relationship between the

CUIs, and if any phenomenon particular to medical language was a contributing

factor.

Are the CUI-level differences reflected in the annotations? Given the breadth of

concepts in the UMLS, and the subjective nature of annotation, we analyzed whether

the CUI assignments in the dataset samples were meaningfully different, and if they

reflected the sample-agnostic relationship between the CUIs.

Ambiguity annotations

The answers to these questions determined three variables for each string:

• Category – the primary linguistic or conceptual phenomenon underlying the

observed ambiguity;

• Subcategory – the biomedicine-specific phenomenon contributing to a pattern

of ambiguity; and

• Arbitrary – the determination of whether the CUIs’ use reflected their concep-

tual difference.

Annotation was conducted by four authors (DNG, GD, BD, AZ) in three phases:

(1) initial categorization of the ambiguous strings in n2c2 2019 and SemEval-2014;
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(2) validation of the resulting typology through joint annotation and adjudication of

30 random ambiguous strings from n2c2 2019; and (3) re-annotation of all datasets

with the finalized typology.

Handling compositional CUIs in CUILESS2016

Compositional annotations in CUILESS2016 presented two variables for ambiguity

analysis: single- or multiple-CUI annotations, and ambiguity of annotations across

samples. We categorized each string in CUILESS as having (a) unambiguous single-

CUI annotation, (b) unambiguous multi-CUI annotation, (c) ambiguous single-CUI

annotation, or (d) ambiguous annotations with both single- and multi-CUI labels.

The latter two categories were considered ambiguous for our analysis.

Cross-dataset analysis

Finally, we evaluated data representativeness in terms of ambiguity in two ways:

between train/test splits in a single dataset (using SemEval-2014 and CUILESS2016),

and across datasets. We compared SemEval-2014 and CUILESS2016, both from the

same corpus, as well comparing each to n2c2 2019 (cross-corpus). For each string

present in a pair of datasets, we compared the annotated CUIs along two axes: (1)

differences in ambiguity type and (2) overlap in annotated CUI sets. We further

analyzed the coverage of approximate UMLS search for retrieving the combination of

CUIs present between the two datasets, to measure the effectiveness of UMLS search

for high-coverage CUI retrieval.
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SemEval-2014 CUILESS2016 n2c2 2019

Dataset
ambiguity

Unambiguous strings 3,014 1,732 3,066
Ambiguous strings 130 273 58

Mean ambiguity 2.15 3.34 2.07

Exact UMLS
ambiguity

Unambiguous strings 2,835 1,908 2,705
No CUIs found 1,328 1,475 1,287
Correct CUI 1,309 244 1,250
Wrong CUI 149 117 153

Ambiguous strings 309 97 420
Full CUI coverage 231 42 347
Partial coverage 21 16 9
No coverage 57 39 64
Mean ambiguity 2.41 2.70 2.44

Approximate
UMLS
ambiguity

Unambiguous strings 1,274 1,414 1,006
No CUIs found 801 1,134 719
Correct CUI 372 188 228
Wrong CUI 90 66 58

Ambiguous strings 1,870 591 2,119
Full CUI coverage 1,598 378 1,843
Partial coverage 51 63 21
No coverage 221 150 255
Mean ambiguity 21.60 19.51 30.92

Table 3.2: String-level ambiguity analysis results across datasets, by source of am-
biguity. Strings are broken down into unambiguous (one CUI only) or ambiguous
(multiple potential CUIs). For UMLS ambiguity, coverage relative to the CUIs each
string is annotated with in the dataset is provided. The mean number of CUIs asso-
ciated with each ambiguous string is provided for each source of ambiguity.

3.2.3 Results

String ambiguity

Table 3.2 shows the results of our string-level ambiguity analysis across our three

datasets. 86%-98% of non-CUI-less strings were unambiguous at the dataset level.

Using exact UMLS search, 86-95% of strings were unambiguous; however, only 46.2%

of strings in both SemEval-2014 and n2c2 2019 return the correct CUI, and over 40% of

strings have no exact match (as CUILESS2016 strings may combine multiple concepts,

exact match is pessimistic for this dataset). Significantly, for 42% of strings, even
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approximate UMLS search failed to retrieve any of the correct CUIs (14.9% of strings

where at least one CUI was returned). This indicates that synonym coverage in the

UMLS remains an active challenge for clinical language. However, when approximate

search did return CUIs, it returned multiple of CUIs 68-88% of the time, with average

ambiguity of nearly 20 or more CUIs. Thus, choosing between multiple candidates is

a significant challenge for high-coverage MCN.

Ambiguity typology

We identified twelve distinct causes of the ambiguity observed in the datasets,

organized into five broad categories. Table 3.3 presents our typology, with examples

of each ambiguity type; brief descriptions of each overall category are provided below.

Polysemy We combined homonymy (completely disjoint senses) and polysemy

(distinct but related senses)(Cruse, 2004; Murphy, 2010) under the category of Poly-

semy for our analysis. While we observed instances of both, we found no actionable

reason to differentiate between them, particularly as other phenomena causing poly-

semy (e.g., metonymy, hyponymy) were covered by other categories. Thus, Polysemy

captured cases where more specific phenomena were not observed and the annotated

CUIs were clearly distinct from one another. As there is extensive literature on re-

solving abbreviations and acronyms (Moon et al., 2014; Mowery et al., 2016; Wu

et al., 2017; Oleynik et al., 2017; Joopudi et al., 2018), we treated cases involving

abbreviations as a dedicated subcategory.

Metonymy Clinical language is telegraphic, meaning that complex concepts are

often referred to by simpler associated forms. Normalizing these references requires
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inference from their context: for example, a reference to “sodium” within lab read-

ings implies a measurement of sodium levels, a distinct concept in the UMLS. We

observed three primary trends in metonymic annotations: reference to a procedure

by an associated biological property, mention of a biological substance to refer to

its measurement, and the fact that many symptomatic findings can also be formal

diagnoses (e.g., “emphysema”, “depression”).

Specificity The rich semantic distinctions in the UMLS (e.g., phenotypic variants

of a disease) lead to frequent ambiguity of Specificity. The ambiguity was often taxo-

nomic, captured as Hierarchical; the other pattern observed was ambiguity in gram-

matical number of a finding, typically due to inflection (e.g., “no injuries” meaning

not a single injury) or recurrence.

Synonymy Many strings were annotated with CUIs that were effectively syn-

onymous; we therefore followed Cruse’s definition of propositional synonymy (Cruse,

2004), in which ontologically distinct senses nonetheless yield the same propositional

interpretation of a statement. We also included co-taxonymy in this category, typi-

cally involving annotation with either over-specified CUIs or CUIs separated only by

negation.

Error A small number of ambiguity cases were due to erroneous annotations stem-

ming from two causes: typological errors in data entry and selection of an inappro-

priate CUI.

Ambiguity types in each dataset

Figure 3.2 presents the frequency of each ambiguity type across our three datasets.

All but 19 strings (3 in SemEval-2014, 16 in CUILESS2016) exhibited a single ambi-

guity type (i.e., all CUIs were related in the same way). To compare the distribution
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of ambiguity categories across datasets, we visualized their relative frequency in Fig-

ure 3.3. Polysemy and Metonymy strings were most common in n2c2 2019, while

Specificity was the plurality category in SemEval-2014 and Synonymy was most fre-

quent in CUILESS2016. The sample-wise distribution followed the string-wise dis-

tribution, except for Polysemy, which included multiple high-frequency strings in

SemEval-2014 and CUILESS2016.

Finally, we visualized the proportion of strings within each ambiguity type consid-

ered arbitrary (at the sample level) during annotation, shown in Figure 3.4. Arbitrary

rates varied across datasets, with the fewest cases in SemEval-2014 and the most in

n2c2 2019. Metonymy – Symptom vs Diagnosis, Specificity – Hierarchical, and Syn-

onymy – Co-taxonymy were all arbitrary in more than 50% of cases.

Cross-dataset ambiguity

The majority of strings are unique to the dataset they appear in, even between

train/test splits, as shown in Table 3.8. Disagreement between the CUIs annotated

for a string in different datasets is frequent, ranging from 18-100%; between SemEval-

2014 and CUILESS2016 (both from the ShARe corpus), 7 of the strings with anno-

tated CUIs in both datasets further disagreed in ambiguity type. While most shared

strings were annotated with the same sets of CUIs, a large proportion of those that

were not were in fact labeled with entirely disjoint CUIs, indicating only partial cov-

erage of the candidate senses for many strings in the existing datasets.
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Figure 3.2: Results of MCN ambiguity analysis, showing (A) the number of unique
ambiguous strings assigned to each ambiguity type by dataset, along with (B) the
total number of dataset samples those strings appear in. (For strings with multiple
ambiguity types, the number of affected samples was estimated for each.) The sample
counts given for Error subcategories represent the actual count of mis-annotated
samples. Total number of ambiguous strings in each dataset – SemEval-2014: 148,
CUILESS2016: 274, n2c2 2019: 62. Total number of affected samples in each dataset
– SemEval-2014: 326, CUILESS2016: 2,775, n2c2 2019: 295.
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Figure 3.3: Distribution of ambiguity types within each MCN dataset, in terms of
(A) the unique strings assigned each ambiguity type and (B) the number of samples
in which those strings occur. The number of strings and samples belonging to each
typology category is shown within each bar portion.

Figure 3.4: Percentage of ambiguous MCN strings in each ambiguity type annotated
as “Arbitrary,” by dataset. Synonymy – Propositional Synonyms and both Error
subcategories are omitted, as they are arbitrary by definition.
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3.2.4 Discussion

Ambiguity is a key challenge in medical concept normalization. However, rel-

atively little research on ambiguity has focused on clinical language. Our findings

demonstrate that clinical language exhibits distinct types of ambiguity, such as clin-

ical patterns in metonymy and specificity, in addition to well-studied problems such

as abbreviation expansion. The results highlight three key gaps in the literature for

MCN ambiguity, which we discuss as future directions for advancing the state of MCN

research.

The next phase of research on clinical ambiguity needs dedicated datasets

The order of magnitude difference between the number of CUIs annotated for

each string in our three datasets and the number of CUIs found through approximate

UMLS search suggests that our current data resources cover only a small subset of

medically-relevant ambiguity. Differences in ambiguity across multiple datasets pro-

vide some improvement in addressing this coverage gap, and clearly indicate the value

of evaluating new MCN methods on multiple datasets to improve ambiguity cover-

age. However, the ShARe and MCN corpora were designed to capture an in-depth

sample of clinical language, rather than a sample with high coverage of specific chal-

lenges like ambiguity. As MCN research continues to advance, more focused datasets

capturing specific phenomena are needed to support development and evaluation of

methodologies to resolve ambiguity. Savova et al. (2008) followed the protocol used in

designing the biomedical NLM WSD corpus (Weeber et al., 2001) to develop a private

dataset containing a set of highly-ambiguous clinical strings; adapting and expanding
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this protocol with resources such as MIMIC-III (Johnson et al., 2016) offers a proven

approach to collect powerful new datasets.

Distinct ambiguity phenomena in MCN call for different evaluation strate-
gies

Evaluation of MCN systems typically uses accuracy (Pradhan et al., 2014, 2015),

in which a predicted CUI is either right or wrong. However, as illustrated by the

distinct ambiguity types we observed, in many cases a CUI other than the gold

label may be highly related (e.g., “Heart failure” and “Left-sided heart failure”), or

even propositionally synonymous. As methodologies for MCN improve and expand,

alternative evaluation methods leveraging the rich semantics of the UMLS can help

to distinguish between a system with a related misprediction from a system with

an irrelevant one. A wide variety of similarity and relatedness measures that utilize

the UMLS to compare medical concepts have been proposed (McInnes and Pedersen,

2015; McInnes et al., 2009; Andrews et al., 2007; Verspoor et al., 2006), presenting a

fruitful avenue for development of new MCN evaluation strategies.

It is important to note, however, that equivalence classes and similarity measures

will often be task- or domain-specific. For example, two heart failure phenotypes may

be equivalent for presenting summary information in an EHR dashboard, but may

be highly distinct for cardiology-specific text mining, or applications with detailed

requirements such as clinical trial recruitment. While dedicated evaluation metrics

for each task would be impractical, a tradeoff between generalizability and sensitivity

to the needs of different applications represents an area for further research.

92



The UMLS offers powerful semantic tools for high-coverage candidate iden-
tification

Our cross-dataset comparison clearly demonstrates the value of utilizing the UMLS

to identify a high-coverage set of candidate CUIs for a medical concept, though the

lack of 100% coverage reinforces the value of ongoing research on synonym identi-

fication (Lang et al., 2017) While retrieving too many candidates presents its own

problems, the UMLS provides a variety of semantic tools to filter out uninforma-

tive candidates. Contextual features such as identifying document sections can sig-

nificantly reduce false positive rates for information extraction (Gundlapalli et al.,

2013a); for example, a simple regular expression to detect phrase/number alterna-

tions would help identify lab readings sections and resolve ambiguity in over 70% of

our observed Metonymy – Measurement vs Substance samples. In our analysis, filter-

ing the candidate list from UMLS approximate search to the correct semantic type

reduced ambiguity by 37% on average; Figueroa et al. (2009) and Patterson and Hur-

dle (2011) describe sublanguage-based approaches to prune out unrelated segments

of the UMLS in text analysis. Similar methods leveraging UMLS semantics present

a significant opportunity for research on MCN methods.

Limitations

The primary limitation of our study was the lack of a broader collection of clinical

datasets for MCN. Since our typology was constructed based on the data observed,

it is likely that medical language exhibits ambiguity types that were either (a) not

present in our data or (b) too infrequent to merit a separate subcategory. This is

exacerbated by the limited scope of the datasets analyzed, including only four doc-

ument types (primarily discharge summaries), with annotations for only a subset of
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medical concepts in each case (disorders for ShARe; problems, tests, and treatments

for MCN). Thus, our typology should not be taken as capturing all sources of ambigu-

ity in clinical language, nor should our observed distributions of category frequencies

be considered universal.

In addition, some ambiguity types were clearer to determine in practice than oth-

ers. In particular, Specificity – Hierarchical, Synonymy – Co-taxonyms, and Error –

Semantic accounted for 39 of the 51 strings noted by the annotators as very difficult

to classify in CUILESS2016. The typological structure we proposed is one of mul-

tiple that could fit the observed data: for example, “Recurrence/Number” could be

recategorized as Polysemy, and Polysemy could itself be split between homonymy and

polysemy (Murphy, 2010). Some strings were also so ambiguous as to defy easy cat-

egorization: for example, “lesion” appears with 24 different labels in CUILESS2016,

and “masses” with 20 across 50 samples.

Finally, preprocessing decisions affect ambiguity significantly. Dropping deter-

miners often assisted our analysis, but also erroneously collapsed distinct strings like

“Hepatitis” and “Hepatitis A”. Further normalization, such as lemmatization, will in-

crease the representativeness of ambiguity, but may also introduce additional noise.

3.3 Conclusions

The clinical text domain presents general challenges for NLP, requiring domain-

specific adjustments of all components of the NLP pipeline, from sentence segmenta-

tion and tokenization to concept extraction. We have demonstrated that off-the-shelf

tools for segmenting documents fail on clinical text, and that while specialized seg-

mentation methods yield more meaningful segments, they are frequently over-zealous
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and introduce additional splits. For functional status information, including activity

reports that typically span many tokens and complex syntactic structure, these chal-

lenges mean that extraction methods must be robust to noise in document segmen-

tation, supporting extraction from both over- and under-segmented text. Chapter 6

presents work towards robust models for FSI extraction, and identifies clear directions

for further research.

At a more semantic level, we have analyzed the role of ambiguity in Medical

Concept Normalization (MCN), a key component of extracting medical information

from EHR documents. We demonstrated that benchmark datasets for MCN cap-

ture very little ambiguity, with much lower coverage of candidate concepts than are

present in the UMLS, and with much lower frequency than ambiguity is observed

in practical NLP applications. The ambiguous strings that were observed exhibited

distinct phenomena from lexical semantics and ontology theory, and were captured in

different proportions across datasets. For functional status information, which often

uses common words to describe everyday objects, actions, and situations, the chal-

lenge of ambiguity is likely to be exacerbated. Chapter 7 describes methods for using

learned representations to support disambiguation in diverse settings, and provides

preliminary evidence that representation learning can help to address different kinds

of medical ambiguity.
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Part II

Learning and Analyzing
Representations of Language
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Modeling the characteristics of language in any given genre or information domain

is key to successful development and application of NLP technologies, particularly in

specialized areas. As illustrated in Part I, these characteristics include vocabulary

(distinctive words and terms, domain-specific ambiguity), context (who produces the

language, and where it is recorded), and structure (what pieces of information are

relevant, and how they relate to one another), as well as idiosyncrasies of particular

groups of speakers. The family of technologies under the umbrella label of repre-

sentation learning provide a well-equipped toolbox for capturing and modeling these

characteristics from observed data. In this part, we first outline the intuitions behind

representation learning technologies and how they capture important information

about language (Chapter 4); we further highlight key advances in the development of

representation learning technologies and what they offer for the purposes of capturing

and analyzing language use in specific domains. We then describe our novel contribu-

tion to the representation learning family in Chapter 5, a method for learning repre-

sentations of concepts of interest for new domains that lack large-scale expert-curated

resources and annotated datasets. These insights, including our contribution, will be

concretely applied to specific challenges in FSI and the clinical genre in Part III,

in which we demonstrate that thoughtful design and application of representation

learning technologies significantly reduces major information gaps in these areas.
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Chapter 4: Capturing lexical and semantic patterns with

representation learning

Language is most easily conceptualized symbolically, in terms of discrete words,

concepts, utterances, etc. Many NLP tools are thus symbolic in nature, such as reg-

ular expressions, n-gram language models, early rule-based parsers, and gazetteers.

However, for statistical modeling, including the use of machine learning techniques,

finding effective mathematical representations of linguistic units is one of the key re-

search and engineering challenges in NLP. As “effectiveness” is application-dependent,

this means that not only is the space of mathematical representation strategies infi-

nite, but no one strategy will necessarily suffice for all settings. For example, a set of

documents may be easily discriminated from one another in terms of topic by repre-

senting them with word counts or TF-IDF vectors, but these representations will not

capture whether the documents were written grammatically.10

10Portions of Section 4.4.2 have previously been published in D Newman-Griffis, AM Lai, and
E Fosler-Lussier. 2017. “Insights into analogy completion from the biomedical domain.” BioNLP
2017, 19-28. Portions of Section 4.5.1 have been published in D Newman-Griffis and E Fosler-
Lussier. 2017. “Second-Order Word Embeddings from Nearest Neighbor Topological Features.”
arXiv preprint arXiv:1705.08488. Portions of Section 4.5.2 have been published in in B Whitaker,
D Newman-Griffis, A Haldar, et al. 2019. “Characterizing the impact of geometric properties of
word embeddings on task performance.” Proceedings of the Third Workshop on Evaluating Vector
Space Representations, 8-17.
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Two primary strategies have been used in developing representations. Feature en-

gineering approaches involve researchers and engineers identifying distinct features–

such as nearby words, part of speech tag, the presence of particular semantic con-

structs, etc.–with which to represent a given unit. These approaches are often quite

powerful, and can yield insight into both the correlations a statistical model captures

and potential underlying phenomena in human cognition.

The other approach, motivated by neuronal activation patterns and models from

cognitive science, is representation learning (Hinton, 1986; Hinton et al., 1986). Un-

der this approach, representations of linguistic units are estimated from observed data

capturing a particular phenomenon, whether logical propositions (Hinton, 1986), word

sequence generation (Bengio et al., 2003), or more specific applications. The repre-

sentation learning framework has come to dominate NLP methods and applications

over the last two decades, both through learning application-specific representations

and through pretraining of representations to be used as features in a variety of

applications (Bengio et al., 2003; Mikolov et al., 2013a; Peters et al., 2018). This

chapter provides an overview of recent advances in representation learning methods

for NLP, and discusses ways in which these representations have been used as a tool

to investigate linguistic and conceptual characteristics of specific domains.

4.1 Embedding language: a note on terminology

Vector-valued representations are often referred to in the NLP literature as em-

beddings. The use of this particular term reflects some interesting aspects of what

these representations are designed to capture about language use in specific domains,

and merits some discussion.
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Generally, an embedding is a function f : X → Y that is both injective and

structure-preserving (with respect to X). The particular type of structure to be

preserved may be defined differently depending on the nature ofX and Y ; for example,

an embedding between topologies (also called a homeomorphism) requires that both

f and its inverse be bijective and continuous (Munkres, 2013).

The “structure” of natural language as a mathematical object is as yet (and

perhaps necessarily) ill-defined. However, three different kinds of structure can be

loosely conceptualized to provide insight into what utility learned representations

provide: a language’s vocabulary; information drawn from a finite source, such as a

text corpus or a knowledge base; and information drawn from an infinite manifold

representing all potential uses of different units (or knowledge about them) within a

language. For ease of discussion, we describe these in terms of words, but the analysis

can be easily extended to other linguistic units.

4.1.1 Embedding a vocabulary

The simplest scenario is when we frame X as the vocabulary of a language: an

n-dimensional hypercube where each of the n words in the language are represented

as a unique one-hot vector (illustrated in Figure 4.1a).11 In this setting, the only

structural characteristics are (1) that every point is unique and (2) that every point

is orthogonal to every other, an undesirable aspect (as cat and dog share significantly

more similarity in natural usage than cat and concrete) that can be ignored in the

embedding definition. If a set of n real-valued representations are all unique, then

they are then an embedding of X under this perspective. This framing is the easiest

11Note that while n is finite in practice, it may in principle be infinite.
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(a) One-hot representations (b) Distributional representations

Figure 4.1: Comparison of symbolic and distributional representations of words. (a)
shows one-hot symbolic representations, in which all words are orthogonal to one
another; (b) shows distributional representations, in which different levels of semantic
similarity are expressible.

to model mathematically, but the least powerful for encoding informative aspects of

language.

4.1.2 Embedding a finite sample

This scenario, which reflects how most representations are calculated in practice,

frames X as some type of information about the units of interest derived from a finite

data sample. These data are typically either samples of language use (i.e., a text

corpus) or of knowledge in a particular domain (e.g., a knowledge base).

The language modeling perspective for learning representations, discussed in more

detail below, is a highly salient example of this approach based the distributional

hypothesis characterized by Harris (1954). This postulates that a word’s meaning

can be understood in terms of the contexts in which it appears in natural language
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use: thus, because cat and dog are used in similar contexts, they have similar meaning,

while concrete is used in nearly disjoint contexts and thus is highly dissimilar to both.

(Figure 4.1 illustrates this point, in contrast with a one-hot representation.) On this

account, the embedding domain X can be modeled in terms of the cooccurrence

statistics of each word within a given sample of text. The structure to be preserved

by the embedding function f is then (informally) that words with similar cooccurrence

statistics should have similar vectors in the image Y , typically analyzed in terms of

cosine or Euclidean distance. By embedding X in a real-valued, low-dimensional

range Y , we can improve generalization and computational efficiency over sparse,

symbolic cooccurrence statistics while approximating the linguistic structure posed

by the distributional hypothesis (Hinton, 1986). A similar argument can be made for

the knowledge base case, where the information encoded in X is the propositions in

the knowledge base regarding each unit, and f is designed such that the image Y

preserves local similarity between nearby points in X.

Importantly, any finite sample of language will exhibit some degree of bias, which

will therefore be reflected in the learned representations. In the simplest case, any fi-

nite sample of arbitrary size has non-zero probability of not including at least one word

in a language, limiting the vocabulary coverage for representation learning (Baayen,

2001). More importantly, the sample will only be able to cover a finite variety of

topics and domains–and in practice, most corpora represent only a small number of

domains, such as prose literature (Francis, 1964), journalistic text (Marcus et al.,

1993), or scientific literature (Kim et al., 2003). Thus, representations learned from

such a sample will only reflect the statistics of language use within that particular

sample. Though this limits generalizability of any learned representations, it also
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presents an opportunity to use this property to study linguistic differences between

samples.

4.1.3 Embedding the true distribution

Finally, in the ideal scenario, the embedding domain X represents all information

about a particular language: its grammar, lexical semantics, compositional rules, etc.

The embedding function f would then map all of this information (within the units

of interest) to the real-valued domain Y while so as to preserve all of these inter-unit

relationships.

It is questionable whether or not representing this information within a formal

system is possible (and Gödel’s incompleteness theorem suggests it is not), and it

is certainly beyond current technical means; nonetheless, it is a useful concept for

what generalizable representations are intended to approximate. Pre-trained lan-

guage model representations estimated from very large, diverse corpora are used in

NLP research and applications precisely because they are assumed to be sufficiently

representative of general language use to inform models of a particular linguistic task.

4.1.4 Embedded representations are not (typically) formal
embeddings

In practice, neither of the criteria for an embedding are strictly met by current

representation learning methods. Injectivity is not typically implemented as a strict

constraint (and would impose an additional computational burden linear in vocab-

ulary size to include), though the uncountably infinite nature of real space means

that it almost always emerges regardless. Preservation of structure would require

formally defining what structure in the domain is to be preserved, which is trivial in
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the first scenario and ill-defined in the second and third. Nonetheless, the informal

idea of a structure-preserving map is key to conceptualizing representation learning

techniques, and an important aspect of their role in characterizing language use.

4.1.5 Usage of the term “embedding” in practice

Mathematically, an embedding is a function, as described above. However, as it is

often useful to discuss the representations of specific objects (words, phrases, etc. in

NLP, or images or other data elswhere in AI research), the term has also come to refer

to the image of a single point in an embedding function. Thus, learned representations

of words are typically referred to as word embeddings, representations of sentences as

sentence embeddings, etc. We follow this convention throughout the rest of this thesis

and use “embedding” and “[embedded] representation” interchangeably.

4.2 Neural methods for word representations

Thorough surveys of word representation methods have been provided by Tur-

ney and Pantel (2010), for feature-based and early neural representations, and more

recently by Camacho-Collados and Pilehvar (2018), who describe and compare a va-

riety of recent methods for learning representations of both words and word senses.

In this section, we identify three broad shifts in representation methodologies with

direct implications for capturing domain semantics, and refer the interested reader to

the earlier surveys for more in-depth discussion. We illustrate the general intuitions

behind each of these three families of methods for word representation in Figure 4.2.
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4.2.1 From engineered features to learned vectors: the de-
velopment of distributional semantics

Hinton (1986) proposed representing words and concepts with statistically-estimated

neuronally-inspired vectors, such that the “activation patterns” (i.e., vector values)

correlated with an explicit knowledge source such as a knowledge base of inter-concept

relationships. However, estimating these representations was computationally de-

manding and difficult to model effectively, meaning that vector models of language

remained primarily symbolic in nature (Turney and Pantel, 2010). Deerwester et al.

(1990) developed a matrix factorization approach to word representation, utilizing

word-document occurrences, and showed that the resulting low-dimensional repre-

sentations improved generalization in information retrieval. Bengio et al. (2003) ex-

panded this idea by utilizing advances in neural network-based modeling techniques

and computational efficiency, proposing a Feed-Forward Neural Network (RNN) rep-

resentation model. This approach moved from from document-level information to

word sequences by leveraging a language modeling objective, which models the likeli-

hood of each word in a sequence conditioned on the preceding words. Prior language

models had calculated this likelihood based on counts of word subsequences (n-gram

models); Bengio et al. (2003) modeled the likelihood using a neural network with a

fixed number of context words as input.

Morin and Bengio (2005) improved the computational efficiency of the Bengio

et al. (2003) model using a hierarchical decomposition of the conditional probability

calculations, though at the expense of model accuracy; a later improvement by Mnih

and Hinton (2008) yielded both more efficient and more accurate modeling. All of

these models used a fixed context window to model the conditional probability of each
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word, which negatively impacts some sentence-level NLP tasks such as semantic role

labeling; Collobert and Weston (2008); Collobert et al. (2011) therefore proposed a

Convolutional Neural Network (CNN) model, which processed a complete sentence at

a time and was trained using a variety of objectives, including part of speech tagging,

named entity recognition, language modeling, and others. Mikolov et al. (2010) then

expanded the idea of processing a larger amount of context, and proposed a Recurrent

Neural Network (RNN) language model, in which the probability of each word was

conditioned on the entire preceding sequence. This additional information improved

the efficacy of the word representations as features in downstream applications.

However, these complex neural models remained expensive to train, requiring sig-

nificant computational power and time to identify useful parameters. Mikolov et al.

(2013a) returned to the idea of a bounded context window and proposed word2vec,

a log-bilinear neural representation model. By modeling the likelihood of each word

relative to a direct vector similarity calculation between a word and the words co-

occurring around it, and approximating normalization of these likelihoods over the

full vocabulary using gradient reversal with a small set of negative samples, word2vec

approximates factorization of the word cooccurrence matrix (Levy and Goldberg,

2014c). This yields a pseudo language model utilizing learned representations that is

easy and fast to train over billions of words, and the utility of these representations

in downstream NLP tasks has led to Mikolov et al. (2013a) being one of the highest-

cited papers in NLP literature. Subsequent work largely focused on improvements

to this modeling strategy: Levy and Goldberg (2014a) incorporated syntactic depen-

dencies into word2vec learning, and Pennington et al. (2014) incorporated insights
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from an early neural network-based paper (Huang et al., 2012) to condition the word

representations jointly on local and global contexts.

What do they offer for semantic analysis?

The family of neural language model approaches discussed above, which have

come to be referred to as static word embeddings, yield representations of words that

aim to capture the cooccurrence distribution of a word by means of vector similarity

(Figure 4.2a). This type of information, drawing on the distributional hypothesis

(Harris, 1954), has been termed distributional semantics in linguistics (Lenci, 2018;

Boleda, 2020). Through a relative organization of word representations that correlates

with cooccurrence patterns, distributional semantic models provide in essence a high-

level snapshot of language use within the corpus they were trained on. Issues of

meaning conflation in polysemous words arise in this setting (where all meanings of

bank, e.g., are lumped together), and have been addressed in a variety of ways; see

Camacho-Collados and Pilehvar (2018) for a review. Nonetheless, as discussed in

Section 4.6, these strategies provide a powerful tool for summarizing patterns in word

usage within a specific sample of language.

4.2.2 Sub-word modeling for morphology and generalization

Lexicalized representation models of the sort proposed by Bengio et al. (2003) and

Mikolov et al. (2013a) learn to represent words as, effectively, independent arbitrary

symbols. Thus, the rich linguistic information captured by morphology is ignored,

meaning that (absent preprocessing) there is no direct commonality between the vec-

tors for run and runs, or swimming and writing. While post-processing methods can

encourage some of these relationships post hoc (Faruqui et al., 2015), capturing some
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degree of morphology in word representations offers potential for both linguistic anal-

ysis and generalization across words, particularly in multilingual settings. Cotterell

and Schütze (2015) augment the log-bilinear model of word2vec with morphologi-

cal information, in order to encourage morphologically-related words to have similar

representations, and demonstrate significant improvement on morphological tasks in

German (a morphologically rich language). Kim et al. (2016b) take a more extreme

approach and model word representations by using a CNN to combine representa-

tions of each character in a word; these word representations are then fed into a Long

Short Term-Memory (LSTM) recurrent neural language model which trains the full

network. While this approach is limited to languages whose written form can be

decomposed into sub-word characters, and it does not explicitly model morphological

information, it has been shown to capture morphological relationships in multilingual

settings (Cotterell and Heigold, 2017).

Character-level representations have frequently been combined with lexicalized

word representations to capture both sub-word and distributional information for

downstream NLP applications (Lample et al., 2016; Dernoncourt et al., 2017a). Bo-

janowski et al. (2017) adapted this approach in the log-bilinear setting with the Fast-

Text model, in which words are decomposed into character subsequences; lexicalized

embeddings are then learned for these subsequences, which are linearly combined

to represent the word (a lexicalized word embedding may also be added as a sec-

ondary representation in their approach). Data-driven identification of subword units

has contributed to recent machine translation models as well: a recent version of

Google’s machine translation system utilized a combination of “wordpiece” subword

units and lexicalized word representations (Wu et al., 2016).
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What do they offer for semantic analysis?

The primary utility shown for sub-word modeling (illustrated in Figure 4.2b) thus

far has been in multilingual scenarios such as translation and morphology induction.

Subword features have been utilized for capturing similarities between agglomerative

terminology in the biomedical domain (Zhang et al., 2019), and sub-word features

have assisted in biomedical named entity recognition (Gridach, 2017; Galea et al.,

2018), but their use for analyzing language in specific domains is largely unexplored.

The utility of analyzing sub-word patterns in this context is likely to be limited,

as most prior work on analyzing sublanguages has investigated differences in lexical

usage–rather than semantic content–and domain-specific grammars (Grishman and

Kittredge, 1986; Friedman et al., 2002). However, sub-word patterns have potential

for analyzing novel linguistic patterns utilizing grapheme substitution or creative mor-

phology (Blashki and Nichol, 2005), and may be useful for identifying relationships

between domain concepts in morphologically rich languages (Laippala et al., 2009).

4.2.3 Capturing context with contextualized representations

Recently, a third significant shift has occurred in word representation methodol-

ogy, with the development of contextualized language models, which calculate context-

sensitive representations of words for use as input features in downstream applications.

Under this approach (illustrated in Figure 4.2c), two instances of the word bank in

different contexts will be represented using different vectors. This both reduces the

impact of meaning conflation (Camacho-Collados and Pilehvar, 2018) and incorpo-

rates the modeling effort of word sequence composition into the generation of input

features, allowing downstream NLP models to focus model capacity more directly on
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the task of interest. Advances in both computational power and efficiency for back-

propagation in complex neural models have enabled these developments, although the

significant increase in computational demands they pose at inference time presents

both a challenge for real-world applications and opportunity for further efficiency

improvements.

The first general-purpose contextualized representation model was proposed by

Melamud et al. (2016), who used a bidirectional Long Short Term-Memory (LSTM)

network, a type of recurrent neural model capable of maintaining information over

long sequences, and which processes input sequences both backwards and forwards in

a joint model. Replacing static representations with these contextualized embeddings

improved performance of state-of-the-art systems for a variety of NLP tasks, indicat-

ing a clear gain in broad-coverage information content. Peters et al. (2017) extend

this approach for the semi-supervised setting, using contextualized embeddings pre-

trained with a language modeling objective as a starting point and further training

the representation model for a task of interest. In parallel, McCann et al. (2017) com-

bined contextualized language modeling with encoder-decoder architectures used in

machine translation to provide a deep contextualization model with multilingual data.

In their approach, static word embeddings are passed into a learned contextualizing

encoder to provide context-sensitive representations.

Deep contextualized representation models offer an additional lever for use as

downstream features, in that each layer of the representation network can be taken

as a different representation of a word in context. Peters et al. (2018) were the first

to demonstrate this capability with ELMo, a two-layer bidirectional LSTM language

model for general purpose use, in which word representations can be calculated as
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a weighted combination of the layers of the representation network corresponding to

each element of an input sequence. This capacity, together with pretrained ELMo

models from large-scale data, made contextualized representations easy to incorporate

into a variety of downstream systems, leading to rapid adoption of contextualized fea-

tures. Radford et al. (2018) improved on this approach, by replacing the LSTM layers

with the Transformer network architecture (Vaswani et al., 2017), which uses self-

attention to improve parallelization and representation power across sequences, and

incorporating the task-specific language model fine-tuning step proposed by Howard

and Ruder (2018).

Both ELMo and the GPT model of Radford et al. (2018) use a language modeling

objective, requiring that word sequences be processed in each direction separately (so

as not to include the word to be predicted in the representations of the words around

it). Devlin et al. (2019) address this issue with the BERT model, which expands GPT

by replacing the language modeling objective with a cloze task, in which randomly-

chosen words are masked in the input sequence, and the training objective is to

maximize the likelihood of the original words using bidirectional information. Their

approach utilized significantly deeper networks (12- and 24-layer Transformers), and

has become the de facto standard for input feature representation. Two notable

extensions of the BERT model have been proposed: ALBERT (Lan et al., 2020) is

a distilled version of BERT yielding comparable performance with fewer parameters,

for application in lower-resourced settings; and RoBERTa (Liu et al., 2019), which

provides a more finely-tuned version of BERT for robust application.

The method space for contextualized representations is still an area of active re-

search, with two further notable advances in recent months. Radford et al. (2019)
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utilized multitask training to develop a larger-scale transformer model called GPT-2,

yielding a generative language model with highly naturalistic output. Concurrently,

Yang et al. (2019) identified two issues with BERT-style model training: a discrep-

ancy between training and inference settings due to the presence of masked words at

training time, and independence of the predictions of the masked words (effectively

decoupling the language model across multiple words within a given sequence). They

proposed XLNet, a transformer-based architecture which utilizes a language model

objective–thus removing the discrepancies caused by BERT’s cloze task–but retains

bidirectional context by training with random permutations of input sequence order.

What do they offer for semantic analysis?

Contextualized models are relatively new, and have yet to be broadly deployed

for analyzing language in specific domains. A number of studies have investigated

different kinds of social biases encoded in contextualized representations: Zhao et al.

(2019) demonstrate evidence of gender bias in ELMo representations, and Tan and

Celis (2019) expand this analysis to include multiple types of social biases. A grow-

ing literature studies linguistic correlates of different components of contextualized

models: Liu et al. (2018) demonstrate that LSTM networks using language data re-

tain sequence information across longer sequences than with non-language data, and

Clark et al. (2019) show that attention heads in BERT correlate with specific syn-

tactic constructs. At a broader level, Jawahar et al. (2019) and Tenney et al. (2019)

demonstrate that layer-wise representations in BERT correlate with different NLP

tasks such as syntactic parsing and named entity recognition.

While contextualized models have not yet been used to study the properties of

language in specific domains, they offer intriguing possibilities for analysis. Bryden
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et al. (2013) and Tamburrini et al. (2015) note distinctive patterns in word usage on

Twitter among different communities: the context-sensitive representations of words

provided by contextualized models provide a tool for investigating similar questions

of community-specific patterns of word or phrase usage at scale. Contextualized rep-

resentations have been shown to separate sentences into a restricted set of classes

across multiple settings (Wang et al., 2019); this suggests that they could also be

used to study semantic patterns in larger linguistic units within a domain, such as

investigating politeness or informativity of different utterances within different com-

munities.

4.3 Representing lexical units other than words

Creating effective representations for larger units of language, such as sentences

and documents, is an essential component for a wide variety of natural language

tasks. The literature on sentence- and document-level representation learning is con-

comitantly vast, and even a high-level summary is out of scope of this thesis. How-

ever, a few general approaches in learning representations of phrases, sentences, and

documents draw on some of the word-level insights described above, and are worth

discussing in brief here.

Defining operations to compose word-level representations to create representa-

tions of larger units has long been an area of research interest in NLP, including both

vector-based operations (Blacoe and Lapata, 2012; Fyshe et al., 2015) and higher-

order tensor algebra (Baroni and Zamparelli, 2010; Socher et al., 2012). An extensive

literature has investigated recursive and recurrent neural network structures for com-

position (Socher et al., 2011; Kalchbrenner and Blunsom, 2013; Kiros et al., 2015),
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continuing through to the current contextualized representation models (Peters et al.,

2018; Devlin et al., 2019; Yang et al., 2019). In many cases, discourse- or document-

level representations are then created via hierarchical models that compose words into

sentence representations, and sentences into documents (Chang et al., 2019; Zheng

et al., 2019).

Learning representations of phrases has also been an area of focused research

within specific domains, where standardized phrases and names often capture infor-

mation of interest. Mikolov et al. (2013b) present a statistical approach for auto-

matically identifying phrases such as named entity mentions, and treating these as

unigrams for representation learning; Yin and Schütze (2014) extend this idea to a

broader set of bigrams. O’Neill et al. (2017) learn representations of legal phrases

using word2vec and employ them for legal document classification. Recently Phan

et al. (2019) employ recurrent neural models to learn representations of standardized

biomedical terms; further approaches in this vein are discussed in Chapter 5.

4.4 Interpreting learned representations in terms of natural
language semantics

In feature engineering approaches to representing language, a word or other lin-

guistic unit is typically represented with a vector of values derived from specific

criteria, such as co-occurrence counts, part of speech tags, etc. In representation

learning approaches, however, the learned values in representation vectors have no

inherent meaning. Hinton (1986) laid out a conceptual framework for this aspect of

representation learning that is worth quoting at length here:

The real criterion for a good set of role-specific representations is that it
makes it easy to express the regularities of the domain. [. . . ] Instead of
saying that activity in a unit means that the person [being represented]
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is old, we can simply specify a set of people for which the unit is active.
Each unit then corresponds to a way of partitioning all the people into
two subsets, and good representations are ones for which the partitions
are helpful in expressing the regularities. (Hinton, 1986)

Learned representations are thus meant to model a type of associative memory:

activation patterns are defined specifically such that items which are associated in

the domain to be represented are assigned similar representations. Interpreting these

representations therefore requires analyzing how correlations between the mathemat-

ical representations correspond to correlations in the items being represented, and

vice versa. It is thus an important part of working with representation spaces to

note the distinction between correlation and meaning : even when correlation is ob-

served between the values of some subset of representation features and a linguistic

phenomenon, this is not sufficient to say that the actual observed values mean some-

thing about language. That is, perturbation of feature values along a correlation

trend does not signify change in the associated phenomenon: it merely may (or may

not) be correlated with it in the particular space of learned representations. Analysis

and interpretation is therefore restricted to a matter of finding correlated correla-

tions in the representation space and the domain of objects being represented. On

this understanding, the ability to map directly back from representation space to the

object space becomes a powerful tool for analysis: Appendix A presents some initial

arguments that sequence models of language may provide this capability.

This section and Section 4.5 present a brief overview of methods that have been

used to analyze the semantic and task-specific correlations captured in the organi-

zation of a representation space; i.e., the image of an embedding function. It is

important to note that, as neural representation methods have become more and
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more complex, a growing literature has also begun to investigate methods for analyz-

ing the internals of representation methods ; e.g., intermediate spaces and operations

with a composite embedding function. While discussion of these methods is out of

the scope of this thesis, we refer the interested reader to Belinkov and Glass (2019)

for a recent survey of methods for analyzing the representation models themselves.

4.4.1 Semantic similarity as an evaluation criterion

When it comes to representing language, the associations between linguistic units

are typically modeled via a language modeling objective, as discussed in Section 4.2.

In this approach, the distributional hypothesis comes into play, suggesting that the

primary regularity to be expressed by a “good” representation model is semantic

similarity.

Evaluating semantic similarity, however, is by no means straightforward. One

frequently-used approach is word pair similarity, in which inventories of word pairs are

assigned a similarity score based on the corresponding word representations, and these

scores are then compared to human-assigned similarity judgments. Rubenstein and

Goodenough (1965) developed a set of 65 word pairs, assigned a real-valued synonymy

score between 0 and 4; this was later extended to 353 noun pairs by Finkelstein

et al. (2001). Later researchers observed that these datasets included aspects of both

similarity (i.e., sharing various properties) and relatedness (i.e., association) (Agirre

et al., 2009; Hill et al., 2015), and proposed new datasets separating the two aspects;12

a variety of other datasets have also been developed, targeting different types of words

12Interestingly, though the distributional hypothesis holds that similarity (in the sense of common
properties) is captured by shared context environments, conflation of similarity and relatedness
in learned representation spaces has been observed by multiple researchers (Faruqui et al., 2016;
Gladkova and Drozd, 2016). It remains unclear which is more desirable to capture in a representation
space, or whether the two ideas should be evaluated using different methods.
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(Luong et al., 2013; Bruni et al., 2014; Radinsky et al., 2011), providing a robust

set of samples for evaluation. With neural representations, word pairs are typically

scored using the cosine similarity between the corresponding representations; these

scores are then ranked and compared with the ranking by human similarity judgments

(Whitaker et al., 2019).

Similarity and relatedness evaluation measures only one aspect of semantics, and

suffers from a variety of issues (Gladkova et al., 2016; Faruqui et al., 2016). Follow-

ing on observations of semantically-correlated clustering in representation space, a

number of studies have presented word categorization via clustering as an additional

semantic analysis strategy (Baroni et al., 2008; Baroni and Lenci, 2011; Whitaker

et al., 2019). Nonetheless, analyzing representation spaces directly as a way of mea-

suring the semantic information they capture remains an unclear proposition at best.

This thesis proposes one alternative reframing of this analytic problem in order to

enable a more direct analysis, discussed in Appendix A; however, the utility of this

idea is as yet unproven.

4.4.2 Geometric translation and relational regularities: the
analogy completion task

Analogical reasoning has long been a staple of computational semantics research,

as it allows for evaluating how well implicit semantic relations between pairs of terms

are represented in a semantic model. Mikolov et al. (2013c) observed an intriguing

artifact of language model-based representations: a select set of semantic and syn-

tactic relationships could be modeled as geometric translations in the representation

space, allowing analogical reasoning through vector arithmetic. They described an

analogy completion task, in which a system is presented with an example term pair
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and a query, e.g., London:England::Paris: , and the task is to correctly fill in

the blank.

Formally, given analogy a:b::c:d, the task is to guess d out of the embedded vo-

cabulary, given a, b, c as evidence. The standard methods for this task use the vector

difference between embedded representations of the related pairs to rank all terms

in the vocabulary by how well they complete the analogy, and choosing the best fit

(Mikolov et al., 2013c; Levy and Goldberg, 2014b). The vector difference is most

commonly used in one of three ways, where cos is cosine similarity:

argmaxd∈V
(
cos(d, b− a+ c)

)
(4.1)

argmaxd∈V
(
cos(d− c, b− a)

)
(4.2)

argmaxd∈V
cos(d, b)cos(d, c)

cos(d, a) + ε
(4.3)

The analogy completion task is intuitively appealing, and continues to be a pop-

ular tool for evaluating learned representations (Flamholz et al., 2019; Fathiamini

et al., 2019). However, the standard formulation of the task suffers from several sig-

nificant flaws, discussed by Linzen (2016) and Rogers et al. (2017), among others.

In Newman-Griffis et al. (2017), we described several significant assumptions in the

analogy task that break down when attempting to model complex domain knowledge

such as biomedical relationships. These included:

Single-Target Each analogy has only one correct answer;

Single-Relationship All the information relating a to b also relates c to d;

Informativity The relationship between the exemplar pair must be both represen-

tative and informative.
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In order to adjust to help relax these assumptions, we described three different

evaluation strategies allowing more information on both sides of the analogy, and pro-

posed the use of several metrics from information retrieval to provide a more nuanced

picture of analogy completion results. We introduced a biomedical analogy dataset

drawn from the UMLS, in order to enable analogical reasoning evaluation for large-

scale biomedical knowledge, and demonstrated that these new evaluation strategies

and metrics better captured the successes and failures of learned representations at

reflecting the complex nature of biomedical relationships.

Is the analogy task informative for analyzing semantic correlates in repre-
sentation space?

Though the modifications described above help to reduce some of the issues identi-

fied in the analogy task, they do not fix them entirely. Further, as shown by Gladkova

et al. (2016) and Newman-Griffis et al. (2017), when analogy datasets are systemat-

ically collected at scale, the standard methodologies by and large fail to identify the

correct answer with any reasonable level of consistency. However, analogical reason-

ing itself is not the culprit in these cases; rather, it is somewhat fallacious to expect

that complex semantic relationships can be represented with consistent geometric

translations in embedding space, and it is not clear what advantage this property

would provide if it were ensured. Rogers et al. (2017) identify some alternative direc-

tions to consider for analogical reasoning in representation spaces, including the use

of supervised models to identify relationships that can be modeled either as hyper-

plane projections or non-linear transformations, as well as the development of new

evaluation paradigms to capture graded relational similarity.
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4.5 Analyzing the effectiveness of representation features

By and large, representation learning methods have not been designed to help

study language (though they are increasingly being adopted as a tool for linguistic

inquiry, as discussed in Section 4.6), but rather to capture informative features for

modeling specific NLP tasks. Several researchers have in fact observed that the

“intrinsic” evaluations of natural language semantics discussed in Section 4.4 are

not necessarily correlated with utility of the features for downstream applications

(Chiu et al., 2016b; Rogers et al., 2018). Thus, “extrinsic” evaluations, in which

different learned representations are used as input features for a variety of downstream

applications and compared in terms of their impact on task performance, are a more

direct evaluation of the utility of learned representations for NLP.

Hinton’s observation that “good representations are the ones for which the par-

titions are helpful in expressing the regularities” (Hinton, 1986) raises two questions

about “good” representation methods. The first is: which regularities are being ex-

pressed through various methods of partitioning the space? This is the intrinsic

semantics question explored by the methods discussed in Section 4.4.

The second question, then, is this: since a chosen representation space (Euclidean

or otherwise) comes with its own geometric and topological properties, how do these

properties affect the ability to reflect desirable regularities by partitioning the space?

We have conducted two studies of this question, which we summarize in the following

sections.
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4.5.1 Topological properties of representations reflect infor-
mative relationships for downstream tasks

Newman-Griffis and Fosler-Lussier (2017) proposed a method for deriving second-

order word representations, using the nearest neighborhood topology of pretrained

representations. Given a set of learned representations for words, a nearest neighbor-

hood graph can be induced, in which each node is a word in the embedding vocabulary,

and all words are connected to their top k nearest neighbors (Figure 4.3 illustrates

this process). This graph abstracts away not only from absolute feature values in the

representation space, but also from global geometric organization within the space,

focusing exclusively on local relationships. This graph is then passed as input to an

algorithm for learning representations of graph nodes using random walks along edges

in the graph (Grover and Leskovec, 2016), and the resulting representations are taken

as the second-order embeddings for each word. To help control for the instability of

nearest neighborhoods across different representation spaces learned from the same

training data (Wendlandt et al., 2018), multiple embedding samples are used for near-

est neighbor graph induction, and graph edges are weighted based on the frequency

of the corresponding nearest neighbor relationships across samples.

Despite the fact that the second-order embeddings can only approximate the struc-

ture of the original representation space, we observed that they retained the majority

of task performance when replacing language model-based static word representations

in recent models. These results are summarized in Table 4.1. Notably, performance is

degraded most significantly for the intrinsic word similarity task, suggesting that this

task (which does not include a learned model on top of the representation space) is
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3-NN
Yellow
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Green

Dog
Cat Cow

Brick

Concrete

Figure 4.3: Example induction of a 3-nearest neighbor graph over an embedded vo-
cabulary, using Euclidean distance. Note that some components may not be accessible
from other components, e.g., concrete is inaccessible from any other vertex.

Task Metric
First-order

performance
Second-order
performance

Performance
delta

Named Entity
Recognition (CoNLL-03)

Macro F-1 87.56 86.48 -1.08

Natural Language
Inference (SNLI)

Accuracy 82.34 82.7 0.36

Paraphrase Recognition
(MSRPC)

F-1 79.8 79.3 -0.5

Word similarity /
relatedness
(WordSim-353)

Spearman’s ρ 52.2 37.9 -14.3

Table 4.1: Summary comparison of first-order and second-order (topological) repre-
sentation features for NLP applications, adapted from Newman-Griffis and Fosler-
Lussier (2017); for each downstream task, results are given for using unmodified,
pre-trained word representations (First-order performance) and topologically-derived
second-order representations (Second-order performance). The metric used for each
task is provided, along with the delta observed between the two settings.

more reliant on the geometric information ablated out by the topological embedding

process.
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Original Affine CDE NNE
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Weighted
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Figure 4.4: Sequence of transformations applied to word representations for geo-
metric analysis, including transformation variants. Each transformation is applied
independently to source word embeddings (i.e., transformations are not composed).
CDE=Cosine Distance Encoding, NNE=Nearest Neighbor Encoding.

4.5.2 Global geometry of representations is less informative
than local geometry

Following on our findings from topological analysis, we investigated the contri-

butions of global geometric features of representation spaces on downstream task

performance in Whitaker et al. (2019). In this work, we proposed a set of distinct

transformations to be applied to a representation space in order to ablate different

aspects of the space’s geometry. These transformations, presented in Figure 4.4,

included affine transforms such as translation and dilation, a new Cosine Distance

Encoding (CDE) function that ablated out absolute feature values while retaining the

global organization of points in the representation space, and the Nearest Neighbor

Encoding (NNE) function utilized in our topological analysis.

As shown in Figure 4.5, we observed that intrinsic evaluations were somewhat

sensitive to affine transformations of the representation space, and intrinsic perfor-

mance degraded significantly when absolute feature values were ablated (mirroring

our observations described in Section 4.5.1). For extrinsic evaluations, affine transfor-

mations made no consistent difference in performance (and in some cases improved
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Figure 4.5: Performance metrics of geometric ablations for word representations on
intrinsic and extrinsic evaluations, as applied to pre-trained GloVe (Pennington et al.,
2014) word embeddings. Transformations are presented in order of decreasing geo-
metric information about the original vectors, and are applied independently of one
another to the source embeddings. For full details on tasks and transformations
shown, see Whitaker et al. (2019).

it), and while the nearest neighbor encoding retained much of the original perfor-

mance, the cosine distance encoding degraded it severely. Thus, we suggest that

explicitly encoding global organization of learned representations introduces unde-

sirable noise into downstream NLP models, and that local geometry is the primary

carrier of information for downstream applications.

4.6 Prior uses of learned representations for sublanguage
analysis

Sections 4.4 and 4.5 described methods for analyzing a learned representation

space, in order to evaluate if the correlations modeled in the mathematical vector

space correspond to linguistically-informative intuitions. However, as highlighted in

Sections 4.1 and 4.2, learned representations can provide a powerful tool for asking
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the inverse question: what do learned representation spaces tell us about the nature

and usage of language?

Sublanguage analysis investigates the characteristics of language use within re-

stricted or specialized domains (Grishman and Kittredge, 1986); one such case was

described in Chapter 2, in our study of rehabilitation medicine language. Sublan-

guages were first defined by Harris (1968), as a subset of a more general natural

language, in which a smaller set of sentences are considered valid—later researchers

have also identified cases where sentences can be valid in a sublanguage but not so (or

at least infelicitous) in the containing language, such as the utterances formed by noun

phrases alone discussed by Friedman et al. (2002). Sublanguages have been studied

within domains from weather reports, military messaging, and aerospace event report-

ing (Grishman and Kittredge, 1986) to code comments (Etzkorn et al., 2001), trouble

tickets for utility services (Symonenko et al., 2006), and patents (Temnikova et al.,

2014), but perhaps nowhere as extensively as in medical language. Identification of

sublanguage patterns and characteristics has driven medical NLP from initial analysis

of structured questionnaires (Sager et al., 1982) and radiology reports (Ranum, 1989;

Friedman et al., 1994) through the description of biomedical literature and clinical

language as distinct research targets for NLP (Friedman et al., 2002) up to expansion

into social media data (Denecke, 2014; Gonzalez-Hernandez et al., 2017).

However, the majority of sublanguage analysis methods have been symbolic—as

the goal is to directly analyze patterns in language, the difficulty in mapping back

from a neural representation space to corresponding language has made the use of

learned representations for sublanguage research difficult. Word representations have

been shown to capture diachronic changes in word meaning and usage (Hamilton

126



et al., 2016b; Kutuzov et al., 2018), as well as changes in biomedical term usage

(Vashisth et al., 2019) and the definitions of psychological concepts (Vylomova et al.,

2019). Azarbonyad et al. (2017) adapt these ideas to study differences in word usage

across political spectra, and Hamilton et al. (2016a) use domain-specific representa-

tions to identify lexica for sentiment analysis. In the medical domain, Ye and Fabbri

(2018) utilize word representations from different clinical document types to identify

keywords for chart review, and our own work, described in Chapter 8, uses concept

representations to study differences in how different biomedical concepts are discussed

among different document types. These results suggest that, though interpretation

may not always be straightforward, learned representations exhibit significant poten-

tial as a tool for sublanguage analysis and adaptation.

4.7 Conclusion

Neural representation learning has become a fundamental element of modern NLP.

Learned representations of language reflect a variety of different modeling approaches

and task formulations, but generally draw on the distributional hypothesis to model

words, sentences, and other linguistic units in mathematical vector spaces such that

vector similarity is correlated with linguistic similarity. Analyzing and interpreting

the degree of correlation with natural language semantics in these vector spaces re-

mains an active research area, as does analysis of the geometric characteristics of

learned representations. However, the utility of learned representation features for

modeling various NLP tasks is increasingly being joined by demonstrated utility of

using learned representations as a tool to study properties of language. In the re-

mainder of this thesis, we present a novel approach to learning representations of
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domain-specific concepts (Chapter 5), and describe several studies investigating dif-

ferent aspects of using learned representations to capture patterns in language use

within specific domains.
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Chapter 5: Learning representations of domain concepts

with distant supervision

The representation learning methodologies discussed in Chapter 4 have focused

largely on words, constituent phrases, and sentences. However, in specialized domains

such as medicine, or sub-domains such as functional status, domain concepts form a

significant portion of the atomic semantic units available. In medicine, these concepts

include specific symptoms, diseases, and procedures; for function, concepts include

activities, social situations, individual environmental factors, and so on. The impor-

tant concepts within a domain are learned by humans through specialized training,

and the various names for these concepts may be systematically captured in standard-

ized vocabularies (as with many clinical terms) or have yet to be standardized (as for

many aspects of functional status). These names can be ambiguous (e.g., “cold”),

atomic multi-word expressions (“Lou Gehrig’s disease”), or semantically-composed

phrases (“diabetes mellitus, insulin-dependent”). Thus, learning representations of

these concepts for use within domain-restricted NLP requires the adaptation of stan-

dard representation learning techniques to these complexities.13

13Portions of this chapter previously published in D Newman-Griffis, AM Lai, and E Fosler-
Lussier. 2018. “Jointly Embedding Entities and Text with Distant Supervision.” Proceedings of the
Third Workshop on Representation Learning for NLP, 195-206.
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Distributed representations of knowledge base entities and concepts are by no

means new, having been used as key elements of many recent NLP applications from

document ranking (Jimeno-Yepes and Berlanga, 2015) and knowledge base completion

(Toutanova et al., 2015) to clinical diagnosis code prediction (Choi et al., 2016a,c).

These works have taken two broad tacks for the challenge of learning to represent enti-

ties, each of which may have multiple unique surface forms in text. Knowledge-based

approaches learn entity representations based on the structure of a large knowledge

base, often augmented by annotated text resources (Yamada et al., 2016; Cao et al.,

2017). Other methods utilize explicitly annotated data, and have been more popular

in the biomedical domain (Choi et al., 2016a; Mencia et al., 2016). Both approaches,

however, are often limited by ignoring some or most of the available textual infor-

mation. Furthermore, such rich structures and annotations are lacking for many

specialized domains, and can be prohibitively expensive to obtain.

We propose a fully text-based method for jointly learning representations of words,

the surface forms of entities, and the entities themselves, from an unannotated text

corpus. We use distant supervision from a terminology, which maps entities to known

surface forms. We augment the well-known log-linear skip-gram model (Mikolov et al.,

2013a) with additional term- and entity-based objectives, and evaluate our learned

embeddings in both intrinsic and extrinsic settings.

Our joint embeddings clearly outperform prior entity embedding methods on sim-

ilarity and relatedness evaluations. Entity and word embeddings capture comple-

mentary information, yielding improved performance when they are combined. Anal-

ogy completion results further illustrate these differences, demonstrating that entities

capture domain knowledge, while word embeddings capture morphological and lexical
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information. Finally, we see that an oracle combination of entity and text embed-

dings nearly matches a state of the art unsupervised method for biomedical word sense

disambiguation that uses complex knowledge-based approaches. However, our embed-

dings show a significant drop in performance compared to prior work in a newswire

disambiguation dataset, indicating that knowledge graph structure contains entity

information that a purely text-based approach does not capture.

5.1 Related Work

Knowledge-based approaches to entity representation are well-studied in recent

literature. Several approaches have learned representations from knowledge graph

structure alone (Grover and Leskovec, 2016; Yang et al., 2016; Wang et al., 2017).

Wang et al. (2014), Yamada et al. (2016), and Cao et al. (2017) all use a joint

embedding method, learning representations of text from a large corpus and entities

from a knowledge graph; however, they rely on the disambiguated entity annotations

in Wikipedia to align their models. Fang et al. (2016) investigate heuristic methods for

joint embedding without annotated entity mentions, but still rely on graph structure

for entity training.

The robust terminologies available in the biomedical domain have been instru-

mental to several recent annotation–based approaches. De Vine et al. (2014) use

string matching heuristics to find possible occurrences of known biomedical concepts

in literature abstracts, and use the sequence of these noisy concepts (without the

document text) as input for skip-gram training. Choi et al. (2016d) and Choi et al.

(2016a) use sequences of structured medical observations from patients’ hospital stays

for context-based learning. Finally, Mencia et al. (2016) take documents tagged with
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Medical Subject Heading (MeSH) topics, and use their texts to learn representations

of the MeSH headers. These methods are able to draw on rich structured and semi-

structured data from medical databases, but discard important textual information,

and empirically are limited in the scope of the vocabularies they can embed.

5.2 Methods

In order to jointly learn entity and text representations from an unannotated

corpus, we use distant supervision (Mintz et al., 2009) based on known terms, strings

which can represent one or more entities. The mapping between terms and entities is

many-to-many; for example, the same infection can be expressed as “cold” or “acute

rhinitis”, but “cold” can also describe the temperature or refer to chronic obstructive

lung disease.

Mappings between terms and entities are defined by a terminology.14 We extracted

terminologies from two well-known knowledge bases:

The Unified Medical Language System (UMLS; Bodenreider, 2004); we use

the mappings between concepts and strings in the MRCONSO table as our terminol-

ogy. This yields 3.5 million entities, represented by 7.6 million strings in total.

Wikipedia; we use page titles and redirects as our terminology. This yields 9.7

million potential entities (pages), represented by 17.1 million total strings. Table 5.1

gives further statistics about the mapping between entities and surface forms in each

of these terminologies.

14Terminology is overloaded with both biomedical and lexical senses; we use it here strictly to
mean a mapping between terms and entities.
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UMLS Wikipedia

# entities 3,590,353 9,723,785
# terms 7,558,254 17,147,756
Max terms 495 7,077

# entities represented by n terms

n = 1 1,823,569 (51%) 6,828,958 (70%)
n = 2 894,932 (25%) 1,565,109 (16%)
3 ≤ n ≤ 10 831,494 (23%) 1,143,452 (12%)
n > 10 40,358 (1%) 186,266 (2%)

# terms mapping to n entities

n = 1 7,473,902 (98%) 16,127,138 (94%)
n = 2 69,816 (1%) 958,242 (5%)
3 ≤ n ≤ 10 14,366 (< 1%) 62,062 (< 1%)
n > 10 170 (� 1%) 15 (� 1%)

Table 5.1: Terminologies used for JET experiments, listing statistics of the many-to-
many mapping between terms and entities in each terminology (including the maxi-
mum # of terms per entity).

While iterating through the training corpus, we identify any exact matches of the

terms in our terminologies.15 We allow for overlapping terms: thus, “in New York

City” will include an occurrence of both the terms “New York” and “New York City.”

Each matched term may refer to one or more entities; we do not use a disambiguation

model in preprocessing, but rather assign a probability distribution over the possible

entities.

Model

We extend the skip-gram model of Mikolov et al. (2013a), to jointly learn vector

representations of words, terms, and entities from shared textual contexts. For a

given target word, term, or entity v, let Cv = c−k . . . ck be the observed contexts in

a window of k words to the left and right of v, and let Nv = n−k,1 . . . nk,d be the d

15We lowercase and strip special characters and punctuation from both terms and corpus text,
and then find all exact matches for the terms.
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random negative samples for each context word. Then, the context-based objective

for training v is

O(v, Cv, Nv) =
∑
c∈Cv

logσ(~c · ~v) +
∑
n∈Nv

logσ(−~n · ~v) (5.1)

where σ is the logistic function.

We use a sliding context window to iterate through our corpus. At each step, the

word w at the center of the window Cw is updated using O(w,Cw, Nw), where Nw are

the randomly-selected negative samples.

As terms are of variable token length, we treat each term t as an atomic unit for

training, and set Ct to be the context words prior to the first token of the term and

following the final token. Negative samples Nt are sampled independently of Nw.

Finally, each term t can represent a set of entities Et. Vectors for these entities

are updated using the same Ct and Nt from t. Since the entities are latent, we weight

updates with uniform probability |Et|−1; attempts to learn this probability did not

produce qualitatively different results from the uniform distribution. Thus, letting T

be the set of terms completed at w, the full objective function to maximize is:

Ô = O(w,Cw, Nw)+∑
t∈T

[
O(t, Ct, Nt) +

∑
e∈Et

1

|Et|
O(e, Ct, Nt)

] (5.2)

Term and entity updates are only calculated when the final token of one or more

terms is reached; word updates are applied at each step. To assign more weight to

near contexts, we subsample the window size at each step from [1, k].
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Pubmed Wikipedia Gigaword

# tokens 2.6B 1.9B 4.3B
# mentions 1.5B 1.4B 3.2B
Avg CP 2.54 1.01 1.01

% of entities by polysemy impact

CP ≥ 1 99.1% 98.6% 98.8%
CP ≥ 2 9.3% 3.5% 2.2%
CP ≥ 10 0.3% 0% � 0.1%

Table 5.2: Training corpora used for JET embedding experiments. # mentions is the
number of exact matches found for terms in the relevant terminology. CP = corpus
polysemy of a given entity. B = billion.

5.2.1 Training corpora

We train embeddings on three corpora. For our biomedical embeddings, we use

2.6 billion tokens of biomedical abstract texts from the 2016 PubMed baseline (1.5

billion noisy annotations). For comparison to previous open-domain work, we use

English Wikipedia (5.5 million articles from the 2018-01-20 dump); we also use the

Gigaword 5 newswire corpus (Parker et al., 2011), which does not have gold entity

annotations.

As our model does not include a disambiguation module for handling ambiguous

term mentions, we also calculate the expected effect of polysemous terms on each

entity that we embed using a given corpus. We call this the entity’s corpus polysemy,

and denote it with CP (e). For entity e with corresponding terms Te, CP (e) is given

as

CP (e) =
∑
t∈Te

f(t)

Z
polysemy(t) (5.3)

where f(t) is the corpus frequency of term t, Z is the frequency of all terms in Te,

and polysemy(t) is the number of entities that t can refer to.
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Table 5.2 breaks down expected polysemy impact for each corpus. The vast ma-

jority of entities experience some polysemy effect in training, but very few have an

average ambiguity per mention of 50% or greater. Most entities with high corpus

polysemy are due to a few highly ambiguous generic strings, such as combinations

and unknown. However, some specific terms are also high ambiguity: for example,

Washington County refers to 30 different US counties.

5.2.2 Hyperparameters

For all of our embeddings, we used the following hyperparameter settings: a con-

text window size of 2, with 5 negative samples per word; initial learning rate of 0.05

with a linear decay over 10 iterations through the corpus; minimum frequency for

both words and terms of 10, and a subsampling coefficient for frequent words of 1e-5.

5.2.3 Baselines

We compare the words, terms,16 and entities learned in our model against two

prior biomedical embedding methods, using pretrained embeddings from each. De

Vine et al. (2014) use sequences of automatically identified ambiguous entities for

skip-gram training, and Mencia et al. (2016) use texts of documents tagged with

MeSH headers to represent the header codes. The most recent comparison method

for Wikipedia entities is MPME (Cao et al., 2017), which uses link anchors and graph

structure to augment textual contexts. We also include skip-gram vectors as a final

baseline; for Pubmed, we use pretrained embeddings with optimized hyperparameters

from Chiu et al. (2016a), and we train our own embeddings with word2vec for both

Wikipedia and Gigaword.

16Unknown terms were handled by backing off to words.
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Full Filtered
Method Sim Rel Sim Rel
Prior work

word2vec 0.559 0.496
DeVine’14 0.455 0.422 0.534 0.482
Mencia’16 0.565 0.534 0.573 0.536

Proposed
Word 0.561 0.490
Term 0.619 0.557*
Entity 0.633* 0.563* 0.614* 0.567*
Entity+Word 0.653* 0.586* 0.615* 0.583*

+Cross 0.662* 0.588* 0.622* 0.573*

Table 5.3: Spearman’s ρ results from JET experiments on UMNSRS similar-
ity/relatedness dataset. Filtered results indicate performance on the shared-
vocabulary subset. *=significantly better (p < 0.05) than word baseline (full), DeVine
et al (filtered).

5.3 Evaluations

Following Chiu et al. (2016b), Cao et al. (2017), and others, we evaluate our em-

beddings on both intrinsic and extrinsic tasks. To evaluate the semantic organization

of the space, we use the standard intrinsic evaluations of similarity and relatedness

and analogy completion. To explore the applicability of our embeddings to down-

stream applications, we apply them to named entity disambiguation. Results and

analyses for each experiment are discussed in the following subsections.

5.3.1 Similarity and relatedness

We evaluate our biomedical embeddings on the UMNSRS datasets (Pakhomov

et al., 2010), consisting of pairs of UMLS concepts with judgments of similarity (566

pairs) and relatedness (587 pairs), as assigned by medical experts. For evaluating

our Wikipedia entity embeddings, we created WikiSRS, a novel dataset of similarity
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and relatedness judgments of paired Wikipedia entities (people, places, and organi-

zations), as assigned by Amazon Mechanical Turk workers. We followed the design

procedure of Pakhomov et al. (2010) and produced 688 pairs each of similarity and

relatedness judgments; for further details on this dataset, please see Newman-Griffis

et al. (2018).

For each labeled entity pair, we calculated the cosine similarity of their embed-

dings, and ranked the pairs in order of descending similarity. We report Spearman’s

ρ on these rankings as compared to the ranked human judgments: Table 5.3 shows

results for UMNSRS, and Table 5.4 for WikiSRS.

As the dataset includes both string and disambiguated entity forms for each pair,

we evaluate each type of embeddings learned in our model. Additionally, as words

and entities are embedded in the same space (and thus directly comparable), we

experiment with two methods of combining their information. Entity+Word sums the

cosine similarities calculated between the entity embeddings and word embeddings

for each pair; the Cross setting further adds comparisons of each entity in the pair to

the string form of the other.

Results

Our proposed method clearly outperforms prior work and text-based baselines on

both datasets. Further, we see that the words and entities learned by our model

include complementary information, as combining them further increases our ranking

performance by a large margin. As the results on UMNSRS could have been due to

our model’s ability to embed many more entities than prior methods, we also filtered

the dataset to the 255 similarity pairs and 260 relatedness pairs that all evaluated
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Wikipedia Gigaword
Method Sim Rel Sim Rel
Prior work

word2vec 0.630 0.630 0.624 0.623
MPME 0.506 0.567 – –

Proposed
Word 0.646 0.655 0.615 0.600
Term 0.607 0.667 0.625 0.673
Entity 0.594 0.648 0.634 0.686
Entity+Word 0.718* 0.754* 0.701* 0.722*

+Cross 0.697* 0.753* 0.695* 0.729*

Table 5.4: Spearman’s ρ results for JET experiments on WikiSRS similar-
ity/relatedness dataset, training on two corpora. All Proposed results are signifi-
cantly better than MPME; *=significantly better than strongest word-level baseline
(p < 0.05).

entity-level methods could represent;17 Table 5.3 shows similar gains on this even

footing. We follow Rastogi et al. (2015) in calculating significance, and use their

statistics to estimate the minimum required difference for significant improvements

on our datasets.

In UMNSRS, we found that cosine similarity of entities consistently reflected hu-

man judgments of similarity better than of relatedness; this reflects previous ob-

servations by Agirre et al. (2009) and Muneeb et al. (2015). Interestingly, we see

the opposite behavior in WikiSRS, where relatedness is captured better than simi-

larity in all settings. In fact, we see a number of errors of relatedness in WikiSRS

predictions, e.g., “Hammurabi I” and “Syria” are marked highly similar, while the

composers “A.R. Rahman” and “John Phillip Sousa” are marked dis-similar. MPME

embeddings tend towards over-relatedness as well (e.g., ranking “Richard Feynman”

and “Paris-Sorbonne University” much more highly than gold labels). Despite better

17For WikiSRS, all methods covered all pairs.
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Dataset Words Entities Entity+Word+Cross

UMNSRS

Iron/Iron Iron/Iron Levaquin/Avelox

Nausea/Vomiting Sinemet/Sinemet Enalapril/Lisinopril

Lipitor/Zocor Enalapril/Lisinopril Carboplatin/Cisplatin

WikiSRS

Minas
Tirith/Minas

Morgul

Real Madrid/FC
Barcelona

Ferrari/Lamborghini

Moscow/Moscow
Kremlin

Minas
Tirith/Minas

Morgul

Moscow/Moscow
Kremlin

Norway/Denmark
Charlize

Theron/Screen
Actor’s Guild

Toshiro
Mifune/Akira

Kurosawa

Table 5.5: Top-ranked pairs in UMNSRS and WikiSRS, using different JET features.

similarity performance, this trend of over-relatedness also holds in biomedical em-

beddings: for example, C0027358 Narcan and C0026549 Morphine are consistently

marked highly similar across embedding methods, even though Narcan blocks the

effects of opioids like morphine.

Comparing entities and words

We observe clear differences in the rankings made by entity vs word embeddings.

As shown in Table 5.5, highly related entities tend to have high cosine similarity,

while word embeddings are more sensitive to lexical overlap and direct cooccurrence.

Combining both sources often gives the most inuitive results, balancing lexical effects

with relatedness. For example, while the top three pairs by combination in WikiSRS

are likely to co-occur, the top three in UMNSRS are pairs of drug choices (antibiotics,
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ACE inhibitors, and chemotherapy drugs, respectively), only one of which is likely to

be prescribed to any given patient at once.

These differences also play out in erroneous predictions. Entity embeddings often

fix the worst misrankings by words: for example, “Tony Blair” and “United Kingdom”

(gold rank: 28) are ranked highly unrelated (position 633) by words, but entities move

this pair back up the list (position 86). However, errors made by entity embeddings are

often also made by words: e.g., C0011175 Dehydration and C0017160 gastroenteritis

are erroneously ranked as highly unrelated by both methods. Interestingly, we find

no correlation between the corpus polysemy of entity pairs and ranking performance,

indicating that ambiguity of term mentions is not a significant confound for this task.

5.3.2 Analogy completion

We use analogy completion to further explore the properties of our joint embed-

dings. Given analogy a : b :: c : d, the task is to guess d given (a, b, c), typically

by choosing the word or entity with highest cosine similarity to b− a + c (Levy and

Goldberg, 2014b). We report accuracy using the top guess (ignoring a, b, and c as

candidates, per Linzen, 2016).

Biomedical analogies

To compare between word and entity representations, we use the entity-level

biomedical dataset BMASS (Newman-Griffis et al., 2017), which includes both entity

and string forms for each analogy. In order to test if words and entities are capturing

complementary information, we also include an oracle evaluation, in which an analogy

is counted as correct if either words or entities produce a correct response.18 We do

18We use the Multi-Answer setting for our evaluation (a single (a, b, c) triple, but a set of correct
values for d).
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Method B3 H1 C6 L1 L6

Words 2.9 0.4 7.9 51.5 69.3
Entities 18.3 22.4 4.5 10.6 10.0

Oracle 20.7 22.9 12.1 55.0 70.9

Table 5.6: Analogy completion results for 5 relations in BMASS with greatest absolute
difference in word performance vs entity performance: B3 (gene-encodes-product), H1
(refers-to), C6 (associated-with), L1 (form-of ), and L6 (has-free-acid-or-base-form).
Reported numbers are Accuracy (%); the better of word and entity performance
is highlighted, and all entity vs word differences are significant (McNemar’s test;
p� 0.01).

not compare against prior biomedical entity embedding methods on this dataset, due

to their limited vocabulary.

Table 5.6 contrasts the performance of different jointly-trained representations

for five relations with the largest performance differences from this dataset. For

gene-encodes-product and refers-to, both of which require structured domain knowl-

edge, entity embeddings significantly outperform word-level representations. Many

of the errors made by word embeddings in these relations are due to lexical over-

sensitivity: for example, in the renaming analogy spinal epidural hematoma:epidural

hemorrhage::canis familiaris: , words suggest latinate completions such as latrans

and caballus, while entities capture the correct C1280551 Dog. However, on more

morphological relations such as has-free-acid-or-base-form, words are by far the bet-

ter option.

The success of the oracle combination method for entity and word predictions

clearly indicates that not only are words and entities capturing different knowledge,

but that it is complementary. In the majority of the 25 relations in BMASS, oracle

results improved on words and entities alone by at least 10% relative. In some cases, as
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with has-free-acid-or-base-form, one method does most of the heavy lifting. In several

others, including the challenging (and open-ended) associated-with, entities and words

capture nearly orthogonal cases, leading to large jumps in oracle performance.

General-domain analogies

No entity-level encyclopedic analogy dataset is available, so we follow Cao et al.

(2017) in evaluating the effect of joint training on words using the Google analogy set

(Mikolov et al., 2013a). As shown in Table 5.7, our Wikipedia embeddings roughly

match MPME embeddings (which use annotated entity links) on the semantic portion

of the dataset, but our ability to train on unannotated Gigaword boosts our results

on all relations except city-in-state.19 Overall, we find that jointly-trained word em-

beddings split performance with word-only skipgram training, but that word-only

training tends to get consistently closer to the correct answer. This suggests that

terms and entities may conflict with word-level semantic signals.

5.3.3 Entity disambiguation

Finally, to get a picture of the impact of our embedding method on downstream

applications, we investigated entity disambiguation.20 Given a named entity occur-

rence in context, the task is to assign a canonical identifier to the entity being referred

to: e.g., to mark that “New York” refers to the city in the sentence, “The mayor of

New York held a press conference.” It bears noting that in unambiguous cases, a ter-

minology alone is sufficient to link the correct entity: for example, “Barack Obama”

can only refer to a single entity, regardless of context. However, many entity strings

19We failed to precisely replicate the analogy numbers reported by Cao et al. (2017); we attribute
this primarily to the different training corpus and slightly different preprocessing.

20This task is also referred to as entity linking and entity sense disambiguation.
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Method
Capital
(com-
mon)

Capital
(all)

Currency
City
in

State
Family

word2vec (W) 89.1 86.0 15.0 55.5 82.4
word2vec (G) 90.9 89.7 18.4 38.4 81.0

MPME (W) 83.6 80.5 11.9 50.6 78.9

Proposed (W) 90.1 78.7 9.1 42.5 75.5
Proposed (G) 92.7 92.3 16.4 31.3 81.6

Table 5.7: Analogy completion accuracy with JET features on the semantic relations
in the Google analogy dataset. W=Wikipedia, G=Gigaword.

(e.g., “cold”, “New York”) are ambiguous, necessitating the use of alternate sources

of information such as our embeddings to assign the correct entity.

Biomedical abstracts

We evaluate on the MSH WSD dataset (Jimeno-Yepes et al., 2011), a benchmark

for biomedical word sense disambiguation. MSH WSD consists of mentions of 203

ambiguous terms in biomedical literature, with over 30,000 total instances. Each

sample is annotated with the set of UMLS entities the term could refer to. We adopt

the unsupervised method of Sabbir et al. (2017), which combines cosine similarity and

projection magnitude of an entity representation e to the averaged word embeddings

of its contexts Cavg as follows:

f(e, Cavg) = cos(Cavg, e) ·
||P (Cavg, e)||
||e||

(5.4)

The entity maximizing this score is predicted.

We compare against concept embeddings learned by Sabbir et al. (2017). They

used MetaMap (Aronson and Lang, 2010) with the disambiguation module enabled

on a curated corpus of 5 million Pubmed abstracts to create a UMLS concept cooccur-

rence corpus for word2vec training. As shown in Table 5.8, our method lags behind
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theirs, though it clearly beats both random (49.7% accuracy) and majority class

(52%) baselines. In addition, we leverage our jointly-embedded entities and words

by adding in the definition-based model used by Pakhomov et al. (2016), which cal-

culates an entity’s embedding as the average of definitions of its neighbors in the

UMLS hierarchy (McInnes et al., 2011). We use this alternate entity embedding in

Equation 5.4 to calculate a second score that we add to the direct entity embedding

score. This yields a large performance boost of over 6% absolute, indicating that

using entities and words together makes up much of the gap between our distantly

supervised embeddings and the external resources used by Sabbir et al. (2017). Using

the definition-based method alone with our jointly-embedded words, we see a signif-

icant increase over Pakhomov et al. (2016), indicating the benefits of joint training.

However, the combined entity and definition model still yields a significantly different

2% boost in accuracy over definitions alone. Finally, we evaluate an oracle combina-

tion that reports correct if either entity or definition embeddings achieve the correct

result; as shown in the last row of Table 5.8, this combination outperforms the entity-

only method of Sabbir et al. (2017), and approaches their state-of-the-art result that

combines entity embeddings with a knowledge-based approach from the structure of

the UMLS.

Specific errors shed more light on these differences. The definition-based method

performs better in many cases where the surface form is a common word, such as coffee

(68% definition accuracy vs 28% entity accuracy) and iris (93% definition accuracy

vs 35% entity accuracy). Entities outperform on some more technical cases, such

as potassium (74% entity accuracy vs 49% definition accuracy). Combining both

approaches in the joint model recovers performance on several cases of low entity
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Method Accuracy %

Baselines

Sabbir et al. (2017) (entities; +MetaMap) 89.3
Sabbir et al. (2017) (+MetaMap, UMLS) 92.2
Pakhomov et al. (2016) (words) 77.7

Proposed

Entities 76.4
Definitions (joint words) 80.8
Entities+Definitions 82.7
Oracle (Entities—Definitions) 90.9

Table 5.8: MSH WSD disambiguation accuracy with JET features. Definitions is
comparable to Pakhomov et al. (2016), using jointly-embedded words. All differences
are significant (McNemar’s test, p� 0.01).

accuracy; for example, joint accuracy on coffee is 68%, and on lupus (53% entity

accuracy), joint performance is 60%.

Newswire entities

AIDA (Hoffart et al., 2011) is a standard dataset for entity linking in newswire,

consisting of approximately 30,000 entities linked to Wikipedia page IDs. To reduce

the search space, Pershina et al. (2015) provided a set of candidate entities for each

mention, which we use for our experiments. The MPME model of Cao et al. (2017)

achieves near state-of-the-art performance accuracy on AIDA with this candidate

set, using the mention sense distributions and full document context included in the

model. As our embeddings are trained without explicit entity annotations, we instead

use the same cosine similarity and projection model discussed in Section 5.3.3 for this

task. In contrast to our results on the biomedical data, we see performance far below

the baseline on these data, as shown in Table 5.9.
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Method Accuracy %

MPME (entities; +graph structure) 89.0

Wikipedia 40.9
Wikipedia + mentions 44.6
Gigaword 58.0
Gigaword + mentions 63.9

Table 5.9: Entity linking accuracy on AIDA dataset, using entity embeddings trained
on Wikipedia and Gigaword. All differences are significant (McNemar’s test, p �
0.01).

Entity Words Terms Entities Joint

C0009443
Common

cold

k(+)-grown cold
C0041912 Upper

respiratory infections
C0041912 Upper

respiratory infections
legionella-

contaminated
short

periods
C0234192 Cold

sensation
C0234192 Cold

sensation

hyperinflating changed
C0719425 “Cold”

pharmaceutical brand

C0719425 “Cold”
pharmaceutical brand

C0242797
Home
health
aides

homemaker-
home

home health
aide

C1553498 Home health
encounter

home health aide

voluntary-
sector

home health
aides

C0019855 Home care
services

home health aides

health/social home health
C1317851 Home health

care specialty
C1553498 Home health

encounter

Table 5.10: Top 3 nearest neighbors to two UMLS CUIs using different JET features:
words, terms, entities, or all three.

However, we improve this performance slightly by multiplying by the similarity

between the entity embedding and the average word embedding of the mention it-

self; this gives us roughly a further 4% accuracy for both Wikipedia and Gigaword

embeddings. Using the surface form recovers several cases where entities alone yield

unlikely options, e.g. Roman-era Britain instead of the United Kingdom for Britain.

However, it also introduces lexical errors: for example, British in several cases refers

147



to the United Kingdom, but the British people are often selected instead. We note

that this extra score actually hurts performance on MSH WSD, where the terms are

curated to be highly ambiguous, in contrast to the shorter contexts and clearer terms

used in AIDA.

Two other issues bear consideration in this evaluation. Prior approaches to the

AIDA dataset, including MPME, make use of the global context of entity mentions

within a document to improve predictions; by using local context only, we observe

some inconsistent predictions, such as selecting the cricket world cup instead of the

FIFA competition for world cup, in a document discussing football. Additionally, in

contrast to the MSH WSD dataset, many instances in AIDA have several highly-

related candidates that introduce some confusion in our results. For example, Ireland

could refer to the United Kingdom of Great Britain and Ireland, the island of Ireland,

or the Republic of Ireland. As our embedding training does not include gold entity

links, cases like this are often errors in our predictions.

Figure 5.1: Percentage of UMLS entities whose nearest JET neighbor shares a seman-
tic type, with no vocabulary restriction (vocab size in parentheses) and in a shared
vocabulary subset.
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5.4 Analysis of joint embeddings

To get a more detailed picture of our joint embedding space, we investigate nearest

neighbors for each point by cosine similarity. As entities in the UMLS are assigned one

or more of over 120 semantic types, we first examine how intermixed these types are in

our biomedical embeddings. Figure 5.1 shows how often an entity’s nearest neighbor

shares at least one semantic type with it, across the three biomedical embedding

methods we evaluated. As each set of embeddings has a different vocabulary, we also

restrict to the entities that all three can embed (approximately 11,000).

We see that our method puts entities of the same type together nearly 40% of

the time, despite embedding over 270 thousand entities. On an even footing, our

method puts types together significantly more often Mencia et al. (2016) (McNemar’s;

p < 0.05), and equivalently with De Vine et al. (2014), despite using less entity-

level information in training. Within our embeddings, major biological types such

as bacteria, eukaryotes, mammals, and viruses all have more than 60% of neighbors

with the same type, while less structured clinical types such as Clinical Attribute

and Daily or Recreational Activity are in the 10-20% range. Corpus polysemy does

not appear to have any effect on this type matching (mean polysemy of 1.5 for both

matched and non-matched entities).

Expanding to include the words and terms in the joint embedding space, however,

we see definite qualitative effects of corpus polysemy on entity nearest neighbors.

Table 5.10 gives nearest word, term, entity, and joint neighbors to two biomedical

entities: C0009443 Common cold (CP = 6.71) and C0242797 Home health aides

(CP = 1). For the more polysemous C0009443, where 95% of its mentions are of the

word “cold” (polysemy=7), word-level neighbors are mostly nonsensical, while term
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neighbors are more logical, and entity neighbors reflect different senses of “cold”. By

contrast, the non-polysemous C0242797, which is represented by 14 different unam-

biguous strings, words, terms, and entities are all very clearly in line with the theme

of home health aides. Notably, the common and unambiguous terms for C0242797

are its nearest neighbors out of all points, while only two of the top 10 neighbors to

C0009443 are terms.

5.5 Discussion

Faruqui et al. (2016) observe that similarity and relatedness are not clearly dis-

tinguished in semantic embedding evaluations, and that it is unclear exactly how

vector-space models should capture them. We see more evidence of this, as cosine

similarity seems to be capturing a mix of the two properties in our data. This mix

is clearly informative, but it empirically favors relatedness judgments, and cosine

similarity is insufficient to separate the two properties.

Corpus polysemy plays a qualitative role in our embedding model, but less of a

quantitative one. It does not correlate with similarity and relatedness judgments or

entity disambiguation decisions, but it clearly affects the organization of the embed-

ding space, by embedding entities with high corpus polysemy in less coherent areas

than those with low polysemy. Linzen (2016) points out that for analogy completion,

local neighborhood structure can interfere with standard methods; how this neigh-

borhood structure affects predictions in more complex tasks is an open question.

Overall, we find two main advantages to our model over prior work. First, by

only using a terminology and an unannotated corpus, we are able to learn entity

embeddings from larger and more diverse data; for example, embeddings learned
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from Gigaword (which has no entity annotations) outperform embeddings learned

on Wikipedia in most of our experiments. Second, by embedding entities and text

into a joint space, we are able to leverage complementary information to get higher

performance in both intrinsic and extrinsic tasks; an oracle model nearly matches

a state-of-the-art ensemble vector and knowledge-based model for biomedical word

sense disambiguation. However, our other entity disambiguation results demonstrate

that there is additional entity-level information that we are not yet capturing. In

particular, it is unclear whether our low performance on disambiguating newswire

entities is due to a disambiguation model mismatch, a lack of information in our

embeddings, or a combination of both.

5.6 Conclusions

JET learns interoperable representations of language at three levels: (1) general

lexical items (i.e., words); (2) lexemes of interest in a specific domain or application

(i.e., terms); and (3) concepts of interest (e.g., entities in a knowledge base). This en-

ables direct analysis of the correspondences between these levels of lexical semantics,

such as comparison of highly representative terms for a given concept. Further, our

method leverages distant supervision to learn context-based representations from any

arbitrary text corpus, without the need for expensive manual annotations of concept

mentions, based only on a curated list of terms of interest and the concepts they

refer to. This makes it a powerful tool for investigating language use in new domains,

which may lack for annotated data sets or well-developed knowledge resources, and

for dynamically analyzing language within different or rapidly-evolving communities.
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In this chapter, we demonstrated that JET embeddings capture similarity and

relatedness between both biomedical concepts and encyclopedia entities better than

prior methods using additional structured resources, and that they approach the

state-of-the-art performance for unsupervised biomedical word sense disambiguation

yielded by sophisticated knowledge-based methods. We further showed that the dif-

ferent levels of lexical semantics in our model capture complementary information

for semantic analysis. In Chapter 7, we expand our work on word sense disambigua-

tion and describe a method to combine multiple sources of learned concept repre-

sentations to normalize concept mentions within a specific domain. In Chapter 8,

we describe a concrete application of JET to linguistic analysis, by demonstrating

that JET representations learned from different clinical document collections capture

clinically-relevant distinctions in reference to symptoms, diagnoses, and procedures.

We have released a publicly-availble implementation of our method,21 along with

the source code used for our evaluations and our pretrained entity embeddings. Our

novel Wikipedia similarity and relatedness datasets are available at the same source.

21github.com/OSU-slatelab/JET
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Part III

Applications to Domain Semantics
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The value of representation learning technologies for specific domains lies in their

downstream utility, in engineering applications or scientific inquiry. Part I laid out

characteristics of functional status information and the clinical genre that pose chal-

lenges for NLP analysis, and Part II described the theory and intuitions underlying

the potential of representation learning to address these challenges. In the third part

of this thesis, we synthesize these directions to demonstrate the utility of learned rep-

resentations for capturing domain semantics, illustrated through three broad studies.

In Chapter 6, we use the contextual information captured by learned representations

as a starting point for automatically extracting FSI reports regarding mobility ac-

tivities. We demonstrate that in-domain representations learned from small amounts

of data are equally informative for this extraction as representations from large-scale

out-of-domain data, and we describe our novel HARE system, a simple extraction

tool based on learned representations that achieves high recall on extracting mobility

reports from multiple datasets In Chapter 7, we present PROSE, a new model of
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semantic grounding that leverages the strengths offered by different methods of rep-

resenting concepts of interest (including our JET method from Chapter 5) via a

context-sensitive projection of concept representations into an interoperable space

for analysis. We demonstrate that by combining multiple strategies for represent-

ing concepts, PROSE achieves strong performance on diverse focused semantic tasks,

including lexical word sense disambiguation, normalization of medical concept men-

tions in clinical language, and classifying activity types described in mobility reports.

Finally, in Chapter 8, we use JET to capture differences in usage patterns of med-

ical concepts between different clinical specialties, and demonstrate that differences

in nearest neighborhood structure reflect the different topical and conceptual focuses

of the respective specialties. Taken together, these studies clearly illustrate the role

of representation learning in capturing the semantics of specialized domains, both in

engineering systems to automatically analyze domain information and in exploring

and describing the characteristics that define new domains.
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Chapter 6: The Value of Domain-Sensitive Representations

for Extracting Functional Status Information

In order to explore the utility of representation learning techniques for capturing

semantic information in restricted domains, we start by investigating their role in

locating semantically-relevant information for the domain. We take as a case study

mobility activity reports, functional status information with high relevance to rehabil-

itation medicine and disability programs. This chapter describes three studies using

representation learning to identify mobility activity reports in EHR data.22 Sec-

tion 6.1 demonstrates that domain-relevant representations, learned from very small

amounts of text data, provide equal or greater utility to representations learned from

large-scale out-of-domain data when provided as input features to an off-the-shelf in-

formation extraction model. Section 6.2 addresses the challenges of low coverage and

syntactic complexity observed in this work, proposing a new model for high-coverage

information extraction, with accompanying software for visualization and qualitative

22Portions of Section 6.1 have been previously published in D Newman-Griffis and A Zirikly.
2018. “Embedding Transfer for Low-Resource Medical Named Entity Recognition: A Case Study
on Patient Mobility.” Proceedings of the BioNLP 2018 Workshop, 1-11. Portions of Section 6.2 have
been published in D Newman-Griffis and E Fosler-Lussier. 2019. “HARE: A Flexible Highlighting
Annotator for Ranking and Exploration.” Proceedings of the 2019 Conference on Empirical Methods
for Natural Language Processing: Systems Demonstrations, 85-90. Portions of Section 6.3 have
previously been submitted for publication and are currently in revision.
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analysis of model predictions. Finally, Section 6.3 describes application of this high-

coverage model to real-world, heterogeneous EHR data collected by the U.S. Social

Security Administration for purposes of adjudicating disability benefit claims, and

demonstrates that our tool has significant potential to support the efficience of this

adjudication process. To our knowledge, the studies described in this chapter are

the first investigations into automatically recognizing functional status information

in EHR text.

6.1 The tradeoff between representativeness and corpus size
in choosing repreesentation features for extracting mo-
bility reports

Thieu et al. (2017) introduced a dataset of EHR documents annotated for de-

scriptions of patient mobility status, one area of activity in the ICF. Automatically

recognizing these descriptions faces significant challenges, including their length and

syntactic complexity and a lack of terminological resources to draw on. In this study,

we view this task through the lens of Named Entity Recognition (NER), as recent

work has illustrated the potential of using Recurrent Neural Network (RNN) NER

models to address similar issues in biomedical NLP (Xia et al., 2017; Dernoncourt

et al., 2017b; Habibi et al., 2017).

An additional strength of RNN models is their ability to leverage pretrained word

embeddings, which capture co-occurrence information about words from large text

corpora. Prior work has shown that the best improvements come from embeddings

trained on a corpus related to the target domain (Pakhomov et al., 2016). However,

free text describing patient functioning is hard to come by: for example, even the large

MIMIC-III corpus (Johnson et al., 2016) includes only a few hundred documents from
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therapy disciplines among its two million notes. While recent work suggests that using

a training corpus from the target domain can mitigate a lack of data (Diaz et al.,

2016), even a careful corpus selection may not produce sufficient data to train robust

word representations.

In this study, we explore the use of an RNN model to recognize descriptions of

patient mobility. We analyze the impact of initializing the model with word embed-

dings trained on a variety of corpora, ranging from large-scale out-of-domain data

to small, highly-targeted in-domain documents. We further explore several domain

adaptation techniques for combining word-level information from both of these data

sources, including a novel nonlinear embedding transformation method using a deep

neural network.

We find that embeddings trained on a very small set of therapy encounter notes

nearly match the mobility NER performance of representations trained on millions of

out-of-domain documents. Domain adaptation of input word embeddings often im-

proves performance on this challenging dataset, in both precision and recall. Finally,

we find that simpler adaptation methods such as concatenation and preinitialization

achieve highest overall performance, but that nonlinear mapping of embeddings yields

the most consistent performance across experiments. We achieve a best performance

of 69% exact match and over 83% token-level match F-1 score on the mobility data,

and identify several trends in system errors that suggest fruitful directions for further

research on recognizing descriptions of patient functioning.
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6.1.1 Related work

The extraction of named entities in free text has been one of the most important

tasks in NLP and information extraction (IE). As a result, this track of research has

matured over the last two decades, especially in the newswire domain for high re-

source languages such as English. Many of the successful existing NER systems use

a combination of engineered features trained using conditional random fields (CRF)

model (McCallum and Li, 2003; Finkel et al., 2005). NER systems have also been

widely studied in medical NLP, using dictionary lookup methods (Savova et al., 2010),

support vector machine (SVM) classifiers (Kazama et al., 2002), and sequential mod-

els (Tsai et al., 2006; Settles, 2004). In recent years, deep learning models have

been used in NER with successful results in many domains (Collobert et al., 2011).

Proposed neural network architectures included hybrid convolutional neural network

(CNN) and bi-directional long-short term memory (Bi-LSTM) as introduced by Chiu

and Nichols (2016). State-of-the-art NER models use the architecture proposed by

Lample et al. (2016), a stacked bi-directional long-short term memory (Bi-LSTM)

for both character and word, with a CRF layer on the top of the network. In the

biomedical domain, Habibi et al. (2017) used this architecture for chemical and gene

name recognition. Liu et al. (2017) and Dernoncourt et al. (2017a) adapted it for

state-of-the-art note deidentification. In terms of functioning, Kukafka et al. (2006)

and Skube et al. (2018) investigate the presence of functioning terminology in clinical

data, but do not evaluate it from an NER perspective.
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Evaluation:

[Scoring: 1=totally dependent, 2=requires assistance, 3=requires

appliances, 4=totally independent]ScoreDefinition.

[Ambulation: 4]Mobility

Observations:

Pt is weight bearing: [she ambulates independently w/o use of

assistive device]Mobility.

Limited to very brief examination.

Figure 6.1: Synthetic document with examples of ScoreDefinition (in blue) and Mo-
bility (in orange).

6.1.2 Data

Thieu et al. (2017) presented a dataset of 250 de-identified EHR documents col-

lected from Physical Therapy (PT) encounters at the Clinical Center of the National

Institutes of Health (NIH). These documents, obtained from the NIH Biomedical

Translational Research Informatics System (BTRIS; Cimino and Ayres 2010), were

annotated for several aspects of patient mobility, a subdomain of functioning-related

activities defined by the ICF; we therefore refer to this dataset as BTRIS-Mobility.

We focus on two types of contiguous text spans: mobility-related activity reports,

here called Mobility entities, and measurement scales related to mobility activity,

which we refer to as ScoreDefinition entities.

Two major differences stand out in BTRIS-Mobility as compared with standard

NER data. The entities, defined for this task as contiguous text spans completely

describing an aspect of mobility, tend to be quite long: while prior NER datasets such

as the i2b2/VA 2010 shared task data (Uzuner et al., 2011) include fairly short entities

(2.1 tokens on average for i2b2), Mobility entities are an average of 10 tokens long,

and ScoreDefinition average 33.7 tokens. Also, both Mobility and ScoreDefinition

entities tend to be entire clauses or sentences, in contrast with the constituent noun
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Entity Train Valid Test
Mobility 1,533 467 947
ScoreDefinition 82 24 48

Table 6.1: Distribution of Mobility and ScoreDefinition entities in BTRIS-Mobility,
broken down by training, validation, and test splits. Due to the rarity of ScoreDefini-
tion entities, we use a 2:1 split of training to test data, and hold out 10% of training
data as validation.

phrases that are the meat of most NER. Figure 6.1 shows example Mobility and

ScoreDefinition entities in a short synthetic document. Despite these challenges,

Thieu et al. (2017) show high (> 0.9) inter-annotator agreement on the text spans,

supporting use of the data for training and evaluation.

These characteristics align well with past successful applications of recurrent neu-

ral models to challenging NLP problems. For our evaluation on this dataset, we

randomly split BTRIS-Mobility at document level into training, validation, and test

sets, as described in Table 6.1.

Text corpora

In order to learn input word embeddings for NER, we use a variety of both in-

domain and out-of-domain corpora, defined in terms of whether the corpus documents

include descriptions of function. For in-domain data, with explicit references to pa-

tient functioning, we use a corpus of 154,967 EHR documents shared with us (under an

NIH Clinical Center Office of Human Subjects determination) from the NIH BTRIS

system.23 A large proportion of these documents comes from the Rehabilitation

Medicine Department of the NIH Clinical Center, including Physical Therapy (PT),

23There is no overlap between these documents and the annotated data in BTRIS-Mobility (T.
Thieu, personal communication).
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Occupational Therapy (OT), and other therapeutic records; the remaining documents

are sampled from other departments of the Clinical Center.

Since BTRIS-Mobility is focused on PT documents, we also use a subset of this

corpus consisting of 17,952 PT and OT documents. Despite this small size, the

topical similarity of these documents makes them a very targeted in-domain corpus.

For clarity, we refer to the full corpus as BTRIS, and the smaller subset as PT-OT.

Out-of-domain corpora

As the BTRIS corpus is considered a small training corpus for learning word

embeddings, we also use three larger out-of-domain corpora, which represent different

degrees of difference from the in-domain data. Our largest data source is pretrained

FastText embeddings from Wikipedia 2017, web crawl data, and news documents.24

We also make use of two biomedical corpora for comparison with existing work.

PubMed abstracts have been an extremely useful source of embedding training in

biomedical NLP (Chiu et al., 2016a); we use the text of approximately 14.7 million

abstracts taken from the 2016 PubMed baseline as a high-resource biomedical corpus.

In addition, we use two million free-text documents released as part of the MIMIC-

III critical care database (Johnson et al., 2016). Though smaller than PubMed, the

MIMIC corpus is a large sample of clinical text, which is often difficult to obtain and

shows significant linguistic differences with biomedical literature (Friedman et al.,

2002). As MIMIC is clinical text, it is the closest comparison corpus to the BTRIS

data; however, as MIMIC focuses on ICU care, the information in it differs signifi-

cantly from in-domain BTRIS documents.

24fasttext.cc/docs/en/english-vectors
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6.1.3 Methods

We adopt the architecture of Dernoncourt et al. (2017a), due to its successful

NER results on CoNLL and i2b2 datasets. The architecture, as depicted in Fig-

ure 6.2, is a stacked LSTM composed of: i) character Bi-LSTM layer that generates

character embeddings. We include this in our experimentations due to its perfor-

mance enhancement; ii) token Bi-LSTM layer using both character and pre-trained

word embeddings as input; iii) CRF layer to enhance the performance by taking into

account the surrounding tags (Lample et al., 2016). We use the following values for

the network hyperparameters, as they yielded the best performance on the validation

set: i) hidden state dimension of 25 for both character and token layers. In contrast

to more common token layer sizes such as 100 or 200, we found the best validation

set performance for our task with 25 dimensions; ii) learning rate = 0.005; iii) pa-

tience = 10; iv) optimization with stochastic gradient descent (SGD) which showed

superior performance to adaptive moment estimation (Adam) optimization technique

(Kingma and Ba, 2015).

Embedding training

We use two popular toolkits for learning word embeddings: word2vec25 (Mikolov

et al., 2013a) and FastText26 (Bojanowski et al., 2017). We run both toolkits us-

ing skip-gram with negative sampling to train 300-dimensional embeddings, and use

default settings for all other hyperparameters.27

25We use word2vec modified to support pre-initialization, from
github.com/drgriffis/word2vec-r.

26github.com/facebookresearch/fastText

27For PT-OT embeddings, due to the extremely small corpus size, we use an initial learning rate
of 0.05, keep all words with minimum frequency 2, and train for 25 iterations.
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Figure 6.2: Bi-LSTM-CRF network architecture; adapted from Newman-Griffis and
Zirikly (2018).
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Domain adaptation methods

We evaluate several different methods for adapting out-of-domain embeddings to

the BTRIS corpus. These methods are summarized below; for full details, we refer

to Newman-Griffis and Zirikly (2018).

Concatenation We concatenate out-of-domain and BTRIS/PT-OT embeddings

as a baseline, allowing the model to learn a task-specific combination of the two

representations.

Preinitialization Pre-trained representations provide a useful starting point for

input features, but can be fine-tuned to correlations in a specific domain. We pre-

initialize both word2vec and FastText toolkits with each of our reference embeddings

and tune on task-relevant BTRIS data.

Linear transform To reduce the impact of limited vocabulary and minimal train-

ing data from small, task-specific corpora, we learn a linear transformation to map one

(high-resource) set of embeddings to another (low-resource) set, using the Frobenius

norm error minimization method of Artetxe et al. (2016).

Non-linear transform Finally, as our embedding domains do not necessarily

have a linear relationship, we extend the method of Artetxe et al. (2016) to a non-

linear transformation, using a feed-forward neural network to project one set of em-

beddings onto another.

6.1.4 Results

We report exact match results, calculated using CoNLL 2003 named entity recog-

nition shared task evaluation scoring (Tjong Kim Sang and De Meulder, 2003), which

requires that all tokens of an entity are correctly recognized. Additionally, given the
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long span of Mobility and ScoreDefinition entities (see Section 6.1.2), we evaluated

partial match performance using token-level results. For simplicity, we report only

performance on the test set; however, validation set numbers consistently follow the

same trends observed in test data. We denote embeddings trained using FastText

with the subscript FT , and word2vec with w2v. Selected findings are presented here;

for the full findings of our study, we refer to Newman-Griffis and Zirikly (2018).

Embedding corpora

Exact and token-level match results for both Mobility and ScoreDefinition enti-

ties are given for embeddings from each corpus in Table 6.2. In-domain BTRIS and

PT-OT embeddings generally yield higher precision than out-of-domain embeddings,

though this comes at the expense of recall. Most notably, despite a thousand-fold

reduction in training corpus size, we see that PT-OT embeddings match the per-

formance of PubMed embeddings on Mobility mentions and achieve the best overall

performance on ScoreDefinition entities. Together with the overall superior perfor-

mance of PT-OT embeddings even to the larger BTRIS corpus, our findings support

the value of using input embeddings that are highly representative of the target do-

main. Nonetheless, MIMIC embeddings have both the best precision and overall

performance on Mobility data, despite the domain mismatch of critical care versus

therapeutic encounters.28 This indicates that there is a limit to the benefits of in-

domain data that can be outweighed by sufficient data from a different but related

28The poor performance of MIMICFT embeddings persisted across multiple experiments with two
embedding samples, manifesting primarily in making very few predictions (less than 30% as many
Mobility entities other embeddings yielded).
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Method
Exact match Token match

Pr Rec F1 Pr Rec F1

WikiNewsFT 67.0 64.0 65.4 83.0 80.0 81.5
BTRISw2v 70.0 63.7 66.6 86.0 79.2 81.5

Concatenated 68.6 66.7 67.6 84.3 81.8 83.0
Preinitialized 66.8 64.5 65.6 78.4 86.4 82.2

Linear 72.5 58.9 65 79.1 83 81
1-layer ReLU 69.2 63.2 66.0 83.4 76.9 80.0
1-layer tanh 70.6 61.0 65.5 84.9 75.7 80.1
5-layer ReLU 67.3 61.9 64.5 83.5 76.6 79.9
5-layer tanh 67.9 62.1 64.9 82.1 77.0 79.4

Table 6.3: Comparison of domain adaptation methods for Mobility NER using a
representative source/target pair: WikiNewsFT as source and BTRISw2v as target.
Results are given for exact entity-level match and token-level match for test set Mo-
bility entities.

domain. Token-level results follow the same trends as exact match; as many entity-

level errors are only off by a few tokens, token-level scores are generally 15-20 absolute

points higher than corresponding entity-level scores.

Mapping methods

Table 6.3 takes a single representative source/target pair and compares the differ-

ent results obtained on recognizing Mobility entities when the NER model is initialized

with embeddings learned using different domain adaptation methods. In this case,

as with several other source/target pairs we evaluated, the concatenated embeddings

give the best overall performance, stemming largely from an increase in recall over

the baselines. However, we see that the nonlinear mapping methods tend to yield

high precision: all settings improve over WikiNews embeddings alone, and the 1-layer

tanh mapping beats the BTRIS embeddings as well. Reflecting the earlier observed

trends of in-domain data, this is offset by a drop in recall, often of several absolute
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Source Target Method Pr Rec F1

WikiNewsFT PT-OTw2v Preinit 72.1 66.1 69.0
WikiNewsFT BTRISw2v Linear 72.5 58.9 65
MIMICw2v BTRISFT Concat 67.4 67.6 67.5

Table 6.4: Best exact-match precision, recall, and F-1 for mobility information ex-
traction. Results are for test set Mobility mentions, listed with the source/target pair
and domain adaptation method used.

percentage points. As detailed in Newman-Griffis and Zirikly (2018), these differ-

ences broadly generalized across source/target pairs, with nonlinear transformations

yielding the most consistent results, while concatenation achieved the best overall per-

formance. Notably, domain adaptation experiments overall yielded neither consistent

performance improvement nor degradation, though many results achieved notable im-

provement in precision or recall individually, suggesting that different methods may

be useful for different downstream applications.

Source/target pairs

Table 6.4 highlights the source/target pairs that achieved the best exact match

precision, recall, and F1 out of all the embeddings we evaluated, both unmapped

and mapped. Though each source/target pair produced varying downstream results

among the domain adaptation methods, a couple of broad trends emerged from our

analysis. The largest performance gains over unmapped baselines were found when

adapting high-resource WikiNews and PubMed embeddings to in-domain represen-

tations; however, these pairings also had the highest variability in results. The most

consistent gains in precision came from using MIMIC embeddings as source, and these

were mostly achieved through the nonlinear mapping approach.
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Error analysis

Several interesting trends emerge in the NER errors produced in our experiments.

Most generally, punctuation is often falsely considered to bound an entity. For exam-

ple, the following string is part of a continuous Mobility entity:29

supine in bed with elevated leg, and was left sitting in bed

However, most trained models separated this at the comma into two Mobility entities.

Unsurprisingly, given the length of Mobility entities, we find many cases where most

of the correct entity is tagged by the model, but the first or last few words are left

off, as in

[he exhibits compensatory gait patterns]Pred as a result]Gold

This behavior is illustrated in the large performance difference between entity-level

and token-level evaluation discussed in Section 6.1.4.

We also see that descriptions of physical activity without specific evaluative ter-

minology are often missed by the model. For example, working out in the yard is a

Mobility entity ignored by the vast majority of our experiments, as is negotiate six

steps to enter the apartment.

Corpus effects

Within correctly predicted entities, we see some indications of source corpus effect

in the results. Considering just the original, non-adapted embeddings as presented

in Table 6.2, we note two main differences between models trained on out-of-domain

vs in-domain embeddings. In-domain embeddings lead to much more conservative

models: for example, PT-OTw2v only predicts 850 Mobility entities in test data, and

29Several examples in this section have been edited for deidentification purposes and brevity.
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BTRISw2v predicts 863; this is in contrast to 922 predictions from MIMICw2v and 940

from PubMedw2v. This carries through to mapped embeddings as well: adding PT-

OT embeddings into the mix decreases the number of predictions across the board.

Several predictions exhibit some degree of domain sensitivity, as well. For exam-

ple, “fatigue” is present at the end of several Mobility mentions, and both PubMed

and MIMIC embeddings typically end these mentions early. PubMed embeddings also

append more typical symptomatic language onto otherwise correct Mobility entities,

such as no areas of pressure noted on skin and numbness and tingling of arms.

MIMIC and the heterogeneous in-domain BTRIS corpus append similar language,

including and chronic pain. WikiNews embeddings, by contrast, appear oversensi-

tive to key words in many Mobility mentions, tagging false positives such as my wife

(spouses are often referred to as a source of physical support) and stairs are within

range.

Changes from domain adaptation

Domain-adapted embeddings fix some corpus-based issues, but re-introduce oth-

ers. Out-of-domain corpora tend to chain together Mobility entities separated by only

one or two words, as in

[He ambulates w/o ad]Mobility, no walker observed,

[antalgic gait pattern]Mobility

While source PubMed and WikiNews embeddings often collapse these to a single

mention, adapting them to the target domain fixes many such cases. However, some

of the original corpus noise remains: PT-OTw2v correctly ignored and chronic pain

after a Mobility mention, but MIMICw2v mapped to PT-OTw2v re-introduces this

error.
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The most consistent improvement obtained from domain adaptation was on Mo-

bility entities that are short noun phrases, e.g. gait instability, and unsteady

gait. Non-adapted embeddings typically miss such phrases, but mapped embeddings

correctly find many of them, including some that in-domain embeddings miss.

Adaptation method effects

The most striking difference we observe when comparing different domain adap-

tation methods is that preinitialization universally leads to longer Mobility entity

predictions, by both mean and variance of entity length. Though preinitialized em-

beddings still perform well overall, many predictions include several extra tokens

before or after the true entity, as in the following example:

(now that her leg is healed [she is independent with wheelchair

transfer]Gold and using her shower bench)Pred

Preinitialized embeddings also have a strong tendency to collapse sequential Mobility

entities. Both of these trends are reflected in the lower token-level precision numbers

in Table 6.3.

Comparing nonlinear mapping methods, we find that a 1-layer mapping with tanh

activation consistently leads to fewer predicted Mobility entities than with ReLU

(for example, 814 vs 859 with WikiNewsFT mapped to BTRISw2v, 917 vs 968 with

MIMICw2v mapped to PT-OTw2v). However, this difference disappears when a 5-layer

mapping is used. Despite their consistent performance, nonlinear transformations

seem to re-introduce a number of errors related to more general mobility terminol-

ogy. For example, he is very active and runs 15 miles per week is correctly rec-

ognized by concatenated WikiNewsFT and BTRISw2v, but missed by several of their

nonlinear mappings.
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6.1.5 Conclusions

We have shown that a state-of-the-art recurrent neural model is capable of captur-

ing long, complex descriptions of mobility, and of recognizing mobility measurement

scales nearly perfectly. Our experiments show that domain adaptation methods for

the learned representations used as input features often improve recognition perfor-

mance over both in- and out-of-domain baselines, though such improvements are

difficult to achieve consistently. Most strikingly, we see that embeddings trained on

a very small corpus of highly relevant documents nearly match the performance of

embeddings trained on extremely large out-of-domain corpora, adding to the recent

findings of Diaz et al. (2016).

Viewing this problem through an NER lens provides a robust framework for model

design and evaluation, but is accompanied by challenges such as effectively evaluat-

ing recognition of long text spans and dealing with complex syntactic structure and

punctuation within relevant mentions. The following sections describe reformulations

of the extraction problem to mitigate these issues.

6.2 Token-level relevance scoring yields high recall for locat-
ing mobility reports

As application of NLP techniques has expanded into an increasing number of

new information domains, including FSI, it is not always clear how best to identify

information of interest, or to evaluate the output of automatic annotation tools.

This can be especially challenging when target data in the form of long strings or

narratives of complex structure, e.g., in financial data (Fisher et al., 2016) or clinical

data (Rosenbloom et al., 2011).
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We introduce HARE, a Highlighting Annotator for Ranking and Exploration.

HARE includes two main components: a workflow for supervised training of auto-

mated token-wise relevancy taggers, and a web-based interface for visualizing and

analyzing automated tagging output. It is intended to serve two main purposes: (1)

triage of documents when analyzing new corpora for the presence of relevant infor-

mation, and (2) interactive analysis, post-processing, and comparison of output from

different annotation systems.

In this study, we apply HARE to mobility-related functional status information,

and demonstrate that our approach mitigates the issues of sensitivity to long text

spans and complex syntactic structure outlined in the previous section. Our model

is able to produce a high-quality ranking of documents based on their relevance to

mobility, and to capture mobility-likely document segments with high fidelity. We

further demonstrate the use of post-processing and qualitative analytic components

of our system to compare the impact of different feature sets and tune processing

settings to improve relevance tagging quality.

6.2.1 Related work

Corpus annotation tools are plentiful in NLP research: brat (Stenetorp et al.,

2012) and Knowtator (Ogren, 2006) being two heavily used examples among many.

However, the primary purpose of these tools is to streamline manual annotation by ex-

perts, and to support review and revision of manual annotations. Some tools, includ-

ing brat, support automated pre-annotation, but analysis of these annotations and

corpus exploration is not commonly included. Other tools, such as SciKnowMine,30

use automated techniques for triage, but for routing to experts for curation rather

30https://www.isi.edu/projects/sciknowmine/overview
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SpaCy WordPiece

Num documents 400
Avg tokens per doc 537 655

Avg mobility tokens per doc 97 112
Avg mobility segments per doc 9.2

Table 6.5: Mobility information token-level dataset details, using SpaCy and Word-
Piece tokenization.

than ranking and model analysis. Document ranking and search engines such as

Apache Lucene,31 by contrast, can be overly fully-featured for early-stage analysis of

new datasets, and do not directly offer tools for annotation and post-processing.

Previous efforts towards extracting mobility information have illustrated that

it is often syntactically and semantically complex, and difficult to extract reliably

(Newman-Griffis and Zirikly, 2018; Newman-Griffis et al., 2019b). Some charac-

terization of mobility-related terms has been performed as part of larger work on

functioning (Skube et al., 2018), but a lack of standardized terminologies limits the

utility of vocabulary-driven clinical NLP tools such as CLAMP (Soysal et al., 2018)

or cTAKES (Savova et al., 2010). Thus, it forms a useful test case for HARE.

6.2.2 System Description

Our system has three stages for analyzing document sets, illustrated in Figure 6.3.

First, data annotated by experts for token relevance can be used to train relevance

tagging models, and trained models can be applied to produce relevance scores on new

documents (Section 6.2.2). Second, we provide configurable post-processing tools for

cleaning and smoothing relevance scores (Section 6.2.2). Finally, our system includes

31https://lucene.apache.org/
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interfaces for reviewing detailed relevance output, ranking documents by their rele-

vance to the target criterion, and analyzing qualitative outcomes of relevance scoring

output (Sections 6.2.2-6.2.2); all of these interfaces allow interactive re-configuration

of post-processing settings and switching between output relevance scores from dif-

ferent models for comparison.

For our experiments on mobility information, we use an extended version of the

dataset described by Thieu et al. (2017), which consists of 400 English-language

Physical Therapy initial assessment and reassessment notes from the Rehabilitation

Medicine Department of the NIH Clinical Center. These text documents have been

annotated at the token level for descriptions and assessments of patient mobility

status. Further information on this dataset is given in Table 6.5. We use ten-fold

cross validation for our experiments, splitting into folds at the document level.

All hyperparameters and design choices discussed in this section were tuned on

held-out development data in cross-validation experiments. We report the best set-

tings here, and provide full comparison of hyperparameter settings, along with imple-

mentation details, in the online supplemental material to Newman-Griffis and Fosler-

Lussier (2019a).32

Relevance tagging workflow

Preprocessing

Different domains exhibit different patterns in token and sentence structure that

affect preprocessing. In clinical text, tokenization is not a consensus issue, and a

variety of different tokenizers are used regularly (Savova et al., 2010; Soysal et al.,

2018). As mobility information is relatively unexplored, we relied on general-purpose

32https://arxiv.org/abs/1908.11302
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Docs

Backend

Preprocessing

Feature 
Extraction

Token 
Annotation

Post-
processing

Viewer Ranking

Frontend

Figure 6.3: HARE workflow for working with a set of documents; outlined boxes
indicate automated components, and gray boxes signify user interfaces.

tokenization with spaCy (Honnibal and Montani, 2017) as our default tokenizer, and

WordPiece (Wu et al., 2016) for experiments using BERT. We did not apply sentence

segmentation, as clinical toolkits often produced short segments that interrupted

mobility information in our experiments.

Feature extraction

Our system supports feature extraction for individual tokens in input documents

using both static and contextualized word embeddings.

Static embeddings Using static (i.e., non-contextualized) embeddings, we calculate

input features for each token as the mean embedding of the token and 10 words on

each side (truncated at sentence/line breaks). We used FastText (Bojanowski et al.,

2017) embeddings trained on a 10-year collection of physical and occupational therapy

records from the NIH Clinical Center.

ELMo (Peters et al., 2018) ELMo features are calculated for each token by tak-

ing the hidden states of the two bLSTM layers and the token layer, multiplying
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Figure 6.4: Precision, recall, and F-2 when varying HARE binarization threshold
from 0 to 1, using ELMo embeddings. The threshold corresponding to the best F-2
is marked with a dotted vertical line.

each vector by learned weights, and summing to produce a final embedding. Com-

bination weights are trained jointly with the token annotation model. We used a

1024-dimensional ELMo model pretrained on PubMed data33 for our mobility exper-

iments.

BERT (Devlin et al., 2019) For BERT features, we take the hidden states of

the final k layers of the model; as with ELMo embeddings, these outputs are then

multiplied by a learned weight vector, and the weighted layers are summed to create

the final embedding vectors.34 We used the 768-dimensional clinicalBERT (Alsentzer

et al., 2019) model35 in our experiments, extracting features from the last 3 layers.

Automated token-level annotation

We model the annotation process of assigning a relevance score for each token

using a feed-forward deep neural network that takes embedding features as input

and produces a binomial softmax distribution as output. For mobility information,

33https://allennlp.org/elmo

34Note that as BERT is constrained to use WordPiece tokenization, it may use slightly longer
token sequences than the other methods.

35https://github.com/EmilyAlsentzer/clinicalBERT
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we used a DNN with three 300-dimensional hidden layers, relu activation, and 60%

dropout.

As shown in Table 6.5, our mobility dataset is considerably imbalanced between

relevant and irrelevant tokens. To adjust for this balance, for each epoch of training,

we used all of the relevant tokens in the training documents, and sampled irrelevant

tokens at a 75% ratio to produce a more balanced training set; negative points were

re-sampled at each epoch. As token predictions are conditionally independent of

one another given the embedding features, we did not maintain any sequence in the

samples drawn. Relevant samples were weighted at a ratio of 2:1 during training.

After each epoch, we evaluate the model on all tokens in a held-out 10% of the

documents, and calculate F-2 score (preferring recall over precision) using 0.5 as the

binarization threshold of model output. We use an early stopping threshold of 1e-05

on this F-2 score, with a patience of 5 epochs and a maximum of 50 epochs of training.

Post-processing methods

Given a set of token-level relevance annotations, HARE provides three post-

processing techniques for analyzing and improving annotation results.

Decision thresholding The threshold for binarizing token relevance scores is config-

urable between 0 and 1, to support more or less conservative interpretation of model

output; this is akin to exploring the precision/recall curve. Figure 6.4 shows preci-

sion, recall, and F-2 for different thresholding values from our mobility experiments,

using scores from ELMo embeddings.

Collapsing adjacent segments We consider any contiguous sequence of tokens with

scores at or above the binarization threshold to be a relevant segment. As shown

in Figure 6.5, multiple segments may be interrupted by irrelevant tokens such as
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(a) No collapsing (b) Collapse one blank

Figure 6.5: Illustration of collapsing adjacent segments in HARE.

punctuation, or by noisy relevance scores falling below the binarization threshold. As

multiple adjacent segments may inflate a document’s overall relevance, our system

includes a setting to collapse any adjacent segments that are separated by k or fewer

tokens into a single segment.

Viterbi smoothing By modeling token-level decisions as conditionally indepen-

dent of one another given the input features, we avoid assumptions of strict segment

bounds, but introduce some noisy output, as shown in Figure 6.6. To reduce some of

this noise, we include an optional smoothing component based on the Viterbi algo-

rithm.

We model the “relevant”/“irrelevant” state sequence discriminatively, using an-

notation model outputs as state probabilities for each timestep, and calculate the

binary transition probability matrix by counting transitions in the training data. We

use these estimates to decode the most likely relevance state sequence R for a tok-

enized line T in an input document, along with the corresponding path probability

(a) Without smoothing (b) With smoothing

Figure 6.6: Illustration of Viterbi smoothing in HARE.
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Figure 6.7: HARE annotation viewer interface.

matrix W , where Wj,i denotes the likelihood of being in state j at time i given ri−1

and ti. In order to produce continuous scores for each token, we then backtrace

through R and assign score si to token ti as the conditional probability that ri is

“relevant”, given ri−1. Let Qj,i be the likelihood of transitioning from state Ri−1 to

j, conditioned on Ti, as:

Qj,i =
Wj,i

WRi−1,i−1

(6.1)

The final conditional probability si is calculated by normalizing over possible states

at time i:

si =
Q1,i

Q0,i +Q1,i

(6.2)

These smoothed scores can then be binarized using the configurable decision thresh-

old.
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Figure 6.8: HARE document ranking interface.

Annotation viewer

Annotations on any individual document can be viewed using a web-based inter-

face, shown in Figure 6.7. All tokens with scores at or above the decision threshold

are highlighted in yellow, with each contiguous segment shown in a single highlight.

Configuration settings for post-processing methods are provided, and update the dis-

played annotations when changed. On click, each token will display the score as-

signed to it by the annotation model after post-processing. If the document being

viewed is labeled with gold annotations, these are shown in bold red text. Addi-

tionally, document-level summary statistics and evaluation measures, with current

post-processing, are displayed next to the annotations.
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Document set ranking

Ranking methods

Relevance scoring methods are highly task-dependent, and may reflect different

priorities such as information density or diversity of information returned. In this

system, we provide three general-purpose relevance scorers, each of which operates

after any post-processing.

Segments+Tokens Documents are scored by multiplying their number of relevant

segments by a large constant and adding the number of relevant tokens to break any

ties by segment count. As relevant information may be sparse, no normalization by

document length is used.

SumScores Documents are scored by summing the continuous relevance scores

assigned to all of their tokens. As with the Segments+Tokens scorer, no adjustment

is made for document length.

Density Document scores are the ratio of binarized relevant tokens to total number

of tokens.

The same scorer can be used to rank gold annotations and model annotations,

or different scorers can be chosen. Ranking quality is evaluated using Spearman’s ρ,

which ranges from -1 (exact opposite ranking) to +1 (same ranking), with 0 indicating

no correlation between rankings. We use Segments+Tokens as default; a comparison

of ranking methods can be found in Newman-Griffis and Fosler-Lussier (2019a).

Ranking interface

Our system also includes a web-based ranking interface, which displays the scores

and corresponding ranking assigned to a set of annotated documents, as shown in

Figure 6.8. For ease of visual distinction, we include colorization of rows based on
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configurable score thresholds. Ranking methods used for model scores and gold an-

notations (when present) can be adjusted independently, and our post-processing

methods (Section 6.2.2) can also be adjusted to affect ranking.

Qualitative analysis tools

We provide a set of three tools for performing qualitative analysis of annotation

outcomes. The first measures lexicalization of each unique token in the dataset with

respect to relevance score, by averaging the assigned relevance score (with or with-

out smoothing) for each instance of each token. Tokens with a frequency below a

configurable minimum threshold are excluded.

Our other tools analyze the aggregate relevance score patterns in an annotation

set. For labeled data, as shown in Figure 6.4, we provide a visualization of precision,

recall, and F-2 when varying the binarization threshold, including identifying the

optimal threshold with respect to F-2. We also include a label-agnostic analysis of

patterns in output relevance scores, illustrated in Figure 6.9, as a way to evaluate

the confidence of the annotator. Both of these tools are provided at the level of an

annotation set and individual documents.

6.2.3 Results on NIH mobility data

Table 6.6 shows the token-level annotation and document ranking results for our

experiments on mobility information. Static and contextualized embedding models

performed equivalently well on token-level annotations; BERT embeddings actually

underperformed static embeddings and ELMo on both precision and recall. Interest-

ingly, static embeddings yielded the best ranking performance of ρ = 0.862, compared
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Embeddings Smoothing
Annotation Ranking

Pr Rec F-2 ρ

Static
No 59.0 94.7 84.4 0.862
Yes 60.5 93.7 84.3 0.899

ELMo
No 60.2 94.1 84.4 0.771
Yes 66.5 91.4 84.8 0.886

BERT
No 55.3 93.8 82.2 0.689
Yes 62.3 90.8 84.3 0.844

Table 6.6: HARE annotation and ranking evaluation on mobility documents, using
three embedding sources. Results are given with and without Viterbi smoothing, us-
ing binarization threshold=0.5 and no collapsing of adjacent segments. Pr=precision,
Rec=recall, ρ=Spearman’s ρ Pr/Rec/F2 are macro-averaged over folds, ρ is over all
test predictions.

to 0.771 with ELMo and 0.689 with BERT. Viterbi smoothing makes a minimal dif-

ference in token-level tagging, but increases ranking performance considerably, par-

ticularly for contextualized models. It also produces a qualitative improvement by

trimming out extraneous tokens at the start of several segments, as reflected by the

improvements in precision.

The distribution of token scores from each model (Figure 6.9) shows that all three

embedding models yielded a roughly bimodal distribution, with most scores in the

ranges [0, 0.2] or [0.7, 1.0].

6.2.4 Discussion

Though our system is designed to address different needs from other NLP an-

notation tools, components such as annotation viewing are also addressed in other

established systems. Our implementation decouples backend analysis from the front-

end interface; in future work, we plan to add support for integrating our annotation

and ranking systems into existing platforms such as brat.
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Figure 6.9: Distribution of token-level HARE relevance scores on mobility data: (a)
word2vec, (b) ELMo, and (c) BERT.

In terms of document ranking methods, it may be preferred to rank documents

jointly instead of independently, in order to account for challenges such as duplication

of information (common in clinical data; Taggart et al. (2015)) or subtopics. However,

these decisions are highly task-specific, and are an important focus for designing

ranking utility within specific domains.

Extending to multi-class/multilabel applications

Our experiments focused on binary relevance with respect to mobility information.

However, our system can be fairly straightfowardly extended to both multi-label (i.e.,

multiple relevance criteria) and multi-class (e.g., NER) settings.

For multi-label settings, such as looking for evidence of limitations in either mobil-

ity or interpersonal interactions, the only requirement is having data that are anno-

tated for each relevance criterion. These can be the same data with multiple annota-

tions, or different datasets; in either case, binary relevance annotators can be trained

independently for each specific relevance criterion. Our post-processing components

such as Viterbi smoothing can then be applied independently to each set of relevance
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annotations as desired. The primary extension required would be to the visualiza-

tion interface, to support display of multiple (potentially overlapping) annotations.

Alternatively, our modular handling of relevance annotations could be redirected to

another visualization interface with existing support for multiple annotations, such

as brat.

Extending to multi-class settings would require fairly minimal updates to both the

interface and our relevance annotation model. Our model is trained using two-class

cross (relevant and irrelevant) cross-entropy; this could easily be extended to n-ary

cross entropy for any desired number of classes, and trained with token-level data

annotated with the appropriate classes. In terms of visualization and analysis, the two

modifications required would be adding differentiating displays for the different classes

annotated (e.g., different colors), and updating the displayed evaluation statistics

to micro/macro evaluations over the multiple classes. Qualitative analysis features

such as relevance score distribution and lexicalization are already dependent only

on the scores assigned to the “relevant” class, and could be presented for each class

independently.

Unexpected poor performance of BERT

Using BERT features in the HARE tagger yielded both lower precision and lower

recall than using either ELMo or static embedding features, when using raw scores

(see Table 6.6)—although Viterbi smoothing erases this gap, BERT features do not

improve performance over static embeddings. This result is rather counterintuitive,

given the weight of recent literature demonstrating that BERT features are consis-

tently more discriminative than either static embeddings or preceding contextualized

methods for text classification tasks, particularly for binary classification.
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Two further sets of experiments are needed to explore possible confounding factors.

First, while our experiments used averaging of the final three layers of BERT, recent

work has demonstrated that semantic content at the lexical level is more directly

encoded in lower layers of the network architecture (Tenney et al., 2019); thus, further

experimentation using representations from different layers of the BERT network are

needed to confirm that this result was not due to choice of layer alone. Second,

one of the strengths of the BERT model is the option of fine-tuning the network

for a downstream classification task; while our experiments use BERT features as

fixed and train a classifier on top of them, BERT fine-tuning further trains the full

network parameters in addition to a task-specific output layer. Thus, adapting the

BERT fine-tuning approach for our token-level classification will shed further light

on the degree to which the observed limitations are due to being unable to tune

BERT parameters to the task of interest. If these additional experiments confirm

our findings, this suggests that for the task of separating mobility-related tokens

from non-mobility tokens, BERT embeddings are less separable than static features

when using a feed-forward network, an outcome which would require further detailed

analysis to explain.

Token-level modeling improves recall at the expense of precision

Our findings clearly support our initial hypothesis: that modeling the extraction

of long, syntactically complex mobility reports as token-level classification improves

recall. We observed consistently high recall with all embedding features we experi-

mented with, and strong ranking performance demonstrated the utility of our model

for prioritizing information-dense documents. Precision, however, was found to be

consistently low, indicating clear room for improvement in de-noising the outputs of
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our model. While Viterbi smoothing qualitatively reduces noise in the form of stan-

dalone “relevant” tokens, we see improved precision as a key aim for further research

on refining our approach. As our understanding of the characteristics of mobility

reports improves, a data-driven ensembling approach to combine the recall of token-

level modeling with the higher precision of sequence labeling models is likely to be a

fruitful direction of development.

6.2.5 Conclusions

We introduced HARE, a supervised system for highlighting relevant information

and interactive exploration of model outcomes. We demonstrated its utility in ex-

periments with clinical records annotated for mobility activity reports, and showed

that it helps to address the issues of description length and complexity highlighted

in Section 6.1. We also provided qualitative analytic tools for understanding the

outcomes of different annotation models. In future work, we plan to extend these

analytic tools to provide rationales for individual token-level decisions. Additionally,

given the clear importance of contextual information in token-level annotations, the

static transition probabilities used in our Viterbi smoothing technique are likely to

degrade its effect on the output. Adding support for dynamic, contextualized estima-

tions of transition probabilities will provide more fine-grained modeling of relevance,

as well as more powerful options for post-processing. Our system is available online

at https://github.com/OSU-slatelab/HARE/.

6.3 Applications to U.S. Social Security Administration data

The US Social Security Administration (SSA) is responsible for the management of

the two largest federal disability programs in the United States, including the review
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and adjudication of new applications for disability benefits. The concept of “disabil-

ity” is operationalized for SSA’s purposes in terms of ability to meet the demands

of gainful employment (SSA 2008). Some of the most frequent functional limitations

leading to reduced ability to meet these demands relate to mobility activities, such as

walking, transferring body positions, and using transportation (Courtney-Long et al.,

2015). A key part of the disability adjudication process is the review of medical doc-

umentation to find evidence to support reported limitations. With current rates of

disability applications placing high demand for adjudication (Autor, 2011), it is im-

portant to develop automated tools to assist with evidence finding in the adjudication

process.

In this study, we investigate the utility of the HARE token-level neural relevance

tagger described in Section 6.2 to index mobility-related information in heteroge-

neous data associated with SSA disability applications. Mobility information is highly

sparse in these documents, comprising on average less than 4% of document tokens

(see Table 6.7). We evaluate the potential utility of our approach as an AI-assisted

support tool for evidence review in disability adjudication, based on three specific use

cases.

Use case 1 is document review, evaluated in terms of token-level relevance tagging.

Use case 2 is fine-grained ranking of clinical documents by their expected amount

of mobility information, evaluated in terms of ranking correlation.

Use case 3 is coarse-grained document triage to identify a high-impact set of doc-

uments for further analysis, evaluated on ranking relevant documents over irrelevant

ones.
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CEs
1,200

CE HIT
# documents 304 449 693

Annot type Spans Document Document
Avg tokens/doc 1,795.9 2,471.5 52,299.8
Avg rel seg/doc 8.6 – –
Avg rel tok/doc 70.7 – –

# rel docs 245 358 530
# irrel docs 59 91 163

Table 6.7: Two SSA datasets used for mobility information extraction study. Token
count is given using SpaCy tokenization; for the span-level annotations, binary docu-
ment relevance is defined as the presence of 1 or more relevant spans in the document.
Span-level relevance statistics are not provided for documents in the 1,200-record cor-
pus, as they are only annotated at the document level. 58 documents were removed
from the 1,200-record dataset due to OCR noise.

We demonstrate that the HARE relevance tagging model yields strong perfor-

mance on all three of these tasks, a first step in developing AI-based tools for re-

viewing functional status information. Qualitative review of system outputs shows

complementary output patterns from static and contextualized embedding features,

and identifies trends in output predictions and false negatives that suggest directions

for further research.

6.3.1 Materials

We used two document collections for our study, both obtained from the US So-

cial Security Administration through an Inter-Agency Agreement, and annotated by

two domain experts; statistics of both document sets are provided in Table 6.7. The

first consists of 304 consultative exams (CEs); these are special-purpose documents
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recording a detailed evaluation of the individual who filed the claim for disability ben-

efits by an expert provider contracted by SSA for the purpose (SSA 2014). Providers

have typically not previously encountered the claimant, and these documents tend

to be fairly long, but by and large consist of a set series of sections prescribed by

SSA (SSA 2014). These documents were annotated for token-level span boundaries

of mobility descriptions, following the protocol used by Thieu et al. (2017).

The second document collection includes 1,200 documents drawn from two types

of SSA records: additional CEs (disjoint from the first collection); and Health IT

(HIT) documents, sets of records provided directly to SSA from provider EHR sys-

tems via regional Health Information Exchanges (HIEs) during the process of devel-

oping a disability case. Both of these document types were annotated with a binary

label indicating the presence or absence of a substantive evaluation of mobility status

anywhere in the document.

Two practical characteristics of the latter dataset impacted the annotation and

analysis processes. Many documents were submitted to SSA via fax or scan, stored in

image format, and converted into text documents using optical character recognition

(OCR). As a result, the digital texts of many of these documents suffered from greater

or lesser degrees of OCR noise. Our annotation protocol therefore included a provision

that if a document was unreadable, or the status of mobility-related information in

it could not be determined due to OCR or other noise, those documents would be

removed from the dataset. After this filtering, our final dataset included 888 relevant

documents and 254 irrelevant documents; further details are provided in Table 6.7.

Additionally, HIT documents in some cases consisted of a conglomeration of

records from multiple encounters. Thus, each HIT document may include several
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individual records, sometimes spanning a significant time period. For the purposes

of our annotations, we annotated the full document as relevant if any of the records

it contained included mobility-relevant information. We did not include record seg-

mentation or sectionization in our experiments, but highlight this as an important

consideration for future work consuming HIE data where packaged records may not

be automatically separated. This issue did noticeably increase both the size of our

HIT documents (as shown in Table 6.7) and the sparsity of relevant information in

them.

6.3.2 Methods

The linguistic characteristics of mobility descriptions are as yet poorly under-

stood, and SSA data is unusually heterogeneous in both form and function, particu-

larly compared to the homogeneous physical therapy notes used in the our previous

study (Newman-Griffis and Zirikly, 2018). Our focus in this study is on exploring

the characteristics of mobility-related information in a setting where it is used in

decision-making, and testing whether a simple approach to estimating relevance for

information retrieval is is an effective support tool for triage of document sets. Given

both the novelty of mobility information and data privacy concerns pertinent to SSA

data, we did not have access to well-developed baselines to compare against. How-

ever, our experimental goal is to evaluate AI-supported retrieval methods for what is

currently a purely manual review-based process, thus our hypotheses are evaluated

purely in terms of recovering the target information at an acceptable level for decision

support.
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Settings for HARE model

We experimented with two approaches to generate word embedding features for

input to the HARE tagger: static and contextualized embeddings. For static em-

beddings, we utilized three 300-dimensional pretrained models: word2vec (Mikolov

et al., 2013a) trained on Google News,36 GloVe (Pennington et al., 2014) trained on

840 billion tokens of Common Crawl web text,37 and FastText (Bojanowski et al.,

2017) trained with subword information on combined Wikipedia and news data.38 In

addition, we trained our own FastText models on a separate corpus of approximately

70,000 medical evidence documents from SSA, using the skip-gram with negative

sampling and CBOW training objectives; due to the much smaller corpus size, we

trained 100-dimensional embeddings. Using static embeddings, we generated input

features by averaging the embeddings for 10 tokens on either side of the target token

(ending at linebreaks).

For contextualized embeddings, we used BERT (Devlin et al., 2019), a language

model-based model structure using a Transformer network to generate context-sensitive

embedding vectors for each token in a sequence. We experimented with three pre-

trained BERT models: BERT-Base,39 trained on Wikipedia and book data; BioBERT

(Lee et al., 2019), trained on PubMed abstracts;40 and clinicalBERT (Alsentzer et al.,

36Available from https://code.google.com/archive/p/word2vec/

37http://nlp.stanford.edu/data/glove.840B.300d.zip

38https://fasttext.cc/docs/en/english-vectors.html

39https://github.com/google-research/bert

40https://github.com/naver/biobert-pretrained
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2019), which is based on BioBERT but fine-tuned on clinical data.41 All BERT mod-

els generate 768-dimensional vectors. We did not fine-tune the BERT models for our

task, but rather generated embedding features using the fixed models and trained the

HARE tagger on top of those features.

Training and hyperparameter settings

To train the HARE tagger, we used the token-level annotated data from the 304

CEs. These documents were tokenized by spaCy (Honnibal and Montani, 2017) (for

static embeddings) or WordPiece (Wu et al., 2016) (required for BERT). We found

that the document corpora we used did not lend themselves to clear definitions of

sentence boundaries, and that the short segmentation often produced by clinical NLP

toolkits (Griffis et al., 2016) frequently interrupted longer narratives; we therefore

used linebreaks to separate text segments for embedding feature generation. We

trained the model by subsampling a balanced set of relevant and irrelevant tokens

from the full training set at each epoch, and training over this set of token samples

using binary cross-entropy. After each epoch, we evaluated the model on a held-

out 10% of the training data, and calculated F-2 score (which weights recall over

precision), using a relevance score of 0.5 as the binarization threshold for discretizing

model output. We used an early stopping threshold of 1e-05 on this development

data, and trained with a patience of 5 epochs and a maximum training period of 50

epochs.

Our system hyperparameters, identified via F-2 score (a variant of F-1 weighted

for recall) on held-out development data, were as follows: HARE DNN configuration

of one 768-unit hidden layer with 10% dropout; training with all positive samples

41https://github.com/EmilyAlsentzer/clinicalBERT
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and a random sampling of negative tokens at a 3:1 negative to positive ratio in each

epoch; and equal class weights. For BERT features, we used BioBERT; for static

embeddings, we utilized both out-of-domain word2vec GoogleNews (GoogleNewsw2v)

and in-domain SSASGNS embeddings.

6.3.3 Experiments

We evaluated the utility of neural relevance tagging for three applications, repre-

senting different components of a clinical records review workflow. The most direct

application (Experiment 1) is document review in order to locate evidence. Experi-

ments 2 and 3 investigate information retrieval applications: Experiment 2 evaluates

detailed ranking of different levels of mobility information, and Experiment 3 evalu-

ates a purely triage application of ranking documents with any mobility information

over those without any. These sets of experiments are discussed in detail in the

following sections.

Experiment 1: token-level relevance tagging

Our first set of experiments was designed to evaluate the accuracy of our relevance

tagger at the token level, as a strict measure of our ability to exactly recover the

location of mobility-relevant information in SSA documents. Five-fold cross validation

was used on the 304 CE corpus for these experiments; held-out development data for

halting model training was randomly subsampled from the training set of each fold.

At test time, all tokens of each test document were passed as input to the model,

and the output relevance probability recorded for each. Evaluation was conducted

by binarizing the relevance probabilities at 0.5, and calculating precision, recall, F-1,

and F-2 over the full set of test tokens.
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Features P R F1 F2
GoogleNewsw2v 48.9 82.2 61.2 72.3

SSASGNS 47.9 82.2 60.5 71.8
BioBERT 46.9 76.9 58.2 68.0

Table 6.8: Token-level HARE relevance tagging results on SSA 304 CE corpus from
5-fold cross validation, using each embedding model. Statistics are averaged across
folds, using a relevance score binarization threshold of 0.5. P=Precision, R=Recall.

Table 6.8 shows the results from our three embedding methods. Relevance tagging

at the token level achieves high recall in all three cases, although only roughly one

in two tokens tagged by the model are “true” relevant tokens. Interestingly, static

embeddings outperform contextualized BERT embeddings on both precision (1-2%)

and recall (5.3%), suggesting that either the contextualized features are overparam-

eterized for this size of dataset, or that using static embeddings enables leveraging

lexicalized triggers in a way that the BERT model has not been tuned to do. For

static embeddings, the higher-data GoogleNewsw2v embeddings slightly outperform

in-domain SSASGNSfeatures (0.5% F-2). From an application perspective, however,

all three embedding methods are effectively equivalent, providing high-recall indexing

with a signal to noise ratio of about 1:1.

Experiment 2: document ranking

Our token-level tagging experiments measured our system’s ability to strictly re-

cover the information of interest. As highlighted in the Introduction, another appli-

cation of use to SSA in processing large collections of medical evidence is priority

ranking documents by the amount of mobility-related information they are likely to

contain. We therefore conducted document ranking experiments, again using the 304
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token-level annotated CEs. A gold standard ranking was calculated by counting the

number of relevant segments (i.e., contiguous sequences of relevant tokens) in the

gold annotations for each document; in the case of a tie in number of segments, the

document with the greater overall number of relevant tokens was assigned the higher

ranking. The same ranking procedure was applied to binarized token-level relevance

predictions to produce a model ranking.

Evaluation of our relevance tagging system was conducted using five-fold cross

validation to obtain relevance scores for every token in the 304 CEs dataset in a

test scenario, as in our first set of experiments. However, measuring rankings of five

different 60-document sets is less informative for a high-volume scenario than ranking

all 304 documents; we therefore combined the test set predictions from all five folds

and ranked the full document set based on these. In our view, the practical evaluation

at a larger scale outweighed potential cross-contamination effects of using test set

outputs trained on overlapping training sets; nonetheless, this evaluation is necessarily

somewhat optimistic. Ranking performance was measured using Spearman’s rank

correlation coefficient ρ, which ranges from -1 (indicating perfect anti-correlation)

to +1 (indicating perfect correlation), where 0 indicates no correlation (i.e., random

re-ranking). We included the Viterbi smoothing technique provided in HARE in our

experiments, to reduce noise in output relevance scores.

Results

As shown in Table 6.9, raw token-level relevance scores rank the 304 documents

with very strong correlation to the gold ranking (ρ = .819 in the worst case). Viterbi

smoothing increases ranking quality considerably, to ρ = .892 in the best case, without

noticeably degrading the token-level annotation quality. The effect of smoothing on
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Features
Raw Smoothed

ρ F-2 ρ F-2
GoogleNewsw2v .832 72.3 .887 72.1

SSASGNS .826 71.9 .892 71.4
BioBERT .819 68.1 .873 69.3

Table 6.9: Annotation and ranking results for HARE experiments on SSA CEs, re-
porting Spearman’s ρ and token-level F-2. Results evaluated on combined test set
predictions from all folds of cross validation. F-2 is micro-averaged, slightly increas-
ing over the macro-averaged F-2 in Table 6.8. Raw uses token-level relevance scores
without post-processing; Smoothed includes Viterbi smoothing.

ranking correlation is about the same for all embedding models; however, its effect on

token-level annotations is noticeably stronger when using BERT embeddings, where

precision is increased by nearly 10% (to 56.2%; compared to a 3% gain for each of

the static models), with a 4% drop in recall (3% for static models). Overall, all three

models yield extremely strong correlation between model ranking and gold ranking

when smoothing is applied, indicating that while token-level annotation may be noisy,

it nonetheless captures the relevant information for successful retrieval.

Experiment 3: binary document ranking

At sufficient scale, determining whether a document merits further detailed anal-

ysis is an important first step in document triage and prioritization. Additionally,

minor re-rankings of documents with similar amounts of mobility information may

affect Spearman’s ρ while having minor practical impact on system utility. We there-

fore conducted a third set of experiments evaluating document ranking based on a

binary assessment of whether they were likely to have any mobility information in

them or not. In this scenario, documents were ranked using the same procedure as
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Features CE HIT All
GoogleNewsw2v 99.1 97.6 97.1

SSASGNS 98.8 98.1 97.9

Table 6.10: Results from binary relevance ranking experiments on SSA data, reporting
average precision over documents in our 1,200-document corpus, evaluated on binary
document-level relevance annotations. Results are also broken out for CEs (449 doc-
uments) and HIT (693). BERT features were not used due to document length. Note
that as CE and HIT documents are interleaved in the All setting, overall results can
be lower than on individual subsets.

in Experiment 2, and this ranking was compared to the gold document-level binary

labels to report average precision (AP). AP measures, for each relevant document,

the proportion of the documents ranked higher which are truly relevant, and averages

these ratios to report overall ranking quality.

For these experiments, we trained our relevance tagger using the full set of all

304 token-annotated CEs, and generated relevance scores for all tokens in each of

the 1,200 binary-annotated documents. Due to the length of the HIT documents in

this collection (an average of 52,000 tokens in each document), feature generation

using BERT proved logistically infeasible: feature extraction on a subset of 150 docu-

ments took several days and produced hundreds of gigabytes of output. We therefore

constrained our experiments to static embedding features only; results from our first

two sets of experiments suggest that BERT would achieve comparable performance

absent logistical difficulties.

Results

Table 6.10 shows the average precision achieved for the 1,200 document dataset,

overall and by document type. Both sets of static embeddings overwhelmingly rank
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relevant documents higher than irrelevant documents, achieving 97.1% overall AP

in the worse case. As can be expected from the considerably larger size of HIT

documents, they are slightly more difficult to rank correctly than CE documents are,

though both feature sets yield above 97.5% AP. Thus, token-level relevance tagging

is clearly effective for prioritizing relevant documents in a triage setting.

6.3.4 Qualitative analyses

Our quantitative system evaluations measured the utility of neural relevance tag-

ging for different application scenarios. We also conducted qualitative analysis of

system outputs to gain an understanding of what kinds of data are being tagged

as relevant (correctly or erroneously) by different systems, and what implications

these trends have for practical evidence retrieval of mobility-related information. We

investigated three primary questions:

1. What differences do we observe in system outputs when using static vs contex-

tualized word embedding features?

2. What patterns of error do we observe for false negatives, i.e. true mobility

descriptions missed by our relevance tagger? (This analysis is constrained to

the 304 CEs, as it requires token-level gold relevance annotations).

3. What patterns do we observe in text segments tagged as relevant? This includes

both true and false positives in the token-level 304 CEs dataset, but also review

of relevance annotations produced for the 1,200 document dataset.
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Static vs contextualized features

While BERT and static embeddings yield comparable results in our experimental

evaluations, they exhibit distinct patterns in the relevance annotations they produce.

As shown in Table 6.11, BERT features lead to a striking increase in number of

relevant segments tagged compared to static embedding features, and a concomitant

reduction in the length of each segment. Many of these short segments are in fact close

to one another, and are often parts of a longer segment tagged by static features; for

example, BERT highlights the underlined phrases in the true segment “her husband

estimated that the maximum weight she could lift would be equivalent to

a gal ##lon of milk”; static features tag the entire segment contiguously. Many

BERT segments are one or two-word phrases that appear somewhat random: for

example, the underlined phrases in “her hair was brown and neck length”. In-

terestingly, changing the binarization threshold does not noticeably decrease this noise

without removing a considerable degree of useful signal as well. However, as illus-

trated in Table 6.11, Viterbi smoothing does close some of the gaps between segments

and remove noisy segments, considerably decreasing the number of segments and in-

creasing mean segment length. False positives remaining after smoothing are typically

reasonable, if not necessarily directly relevant to mobility: for example, “her posture

was within normal limits”, and “she did not use correct ##ive lenses”.

Static embeddings produce many fewer short segments, though some individ-

ual words and phrases are still tagged: e.g., “The claimant reported he has a

problem with agitation”. Static output segments, by contrast, often start before

a true relevant segment and extend after it, suggesting lexicalization effects within

the 10-token context window; see “enabled him to take a job as a school bus
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Features
# Segments Tokens/Segment
Mean Max Mean Max

GoogleNewsw2v 10.7 57 11.2 114
+Smoothing 6.7 42 16.3 130

SSASGNS 10.9 64 11.2 99
+Smoothing 6.4 39 17.3 103

BioBERT 46.5 319 2.8 71
+Smoothing 15.8 87 6.6 93

Table 6.11: Statistics of HARE outputs on SSA 304 CE corpus, including number of
segments per document and number of tokens per segment, using relevance scores.
Results are given using raw scores, binarized at 0.5, and with Viterbi smoothing.
GoogleNewsw2v and SSASGNS use SpaCy tokenization, while BioBERT uses Word-
Piece.

driver ” (italics indicate the true relevant segment). Some static segments are also

offset from true segments, e.g. “will get up once during the night to use

the bathroom”. This produces an error in token-level evaluation, but is still helpful

from a retrieval standpoint.

False negatives

In terms of false negative segments (i.e., true relevant segments in which none

of the tokens were tagged as relevant), the noisiness of BERT output proves useful:

virtually no relevant segments in the 304 CEs were entirely missed when using BERT

features. Static embeddings, while qualitatively appealing in producing long, contigu-

ous relevant segments, are also more susceptible to false negatives. The main trend

we observed in these cases was syntactic: examples with mobility-relevant action

verbs, such as “walking” or “transfer” are retrieved reliably, but many segments with

mobility-relevant nouns were missed when using static features. For example, “right
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and left lateral bending approximately 10 degrees” was missed by static fea-

tures, while BERT tagged “and” and “bending approximately.” Some examples com-

bining long-distance dependencies with less direct assertions, such as “claimant has

symptomatic limitations in his ability to squat”, were also missed by both

sets of static features.

Relevance prediction patterns

Apart from the distinctions between outputs from static and BERT features, we

observed several general patterns in relevance tagging outputs. The first is lexical-

ization: action verbs such as “stoop,” “crouch,” “climb,” and “balance” (along with

morphological variants) were tagged as relevant more than 90% of the time by all three

embedding models, as were mobility-relevant objects such as “ladders,” “ramps,” and

“stairs.” These lexicalizations mostly reflected the true mobility annotations, though

some false positives leaked through: for example, lexicalizing “table” from uses as a

physical location led to 64 HIT documents being tagged with a single relevant seg-

ment, “Table of Contents.” More practically, lexicalization effects yielded some ac-

ceptable false positives, such as “she left because she had surgery and had to

stand”, as well as more neutral statements such as “call bell and possessions

in reach” (where “reach” is a common verb in mobility annotations).

The more challenging problem to handle in terms of false positives is a pragmatic

one. Some phrases tagged as relevant describe neutral positional information: e.g.,

“Patient in chair”, with no information on how the patient reached that position.

More significantly, many tagged references to mobility status were hypothetical, de-

scribing goals for the patient’s therapy or conjectures; several others were field headers

in clinical templates, referring to limitations or actions that may or may not have been
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Features # Seg. Tok./Seg. % Tok.
CE (2,471.5 avg tokens)

GoogleNewsw2v 14.7 8.9 5.3
SSASGNS 14.9 9.0 5.4

HIT (52,299.8 avg tokens)
GoogleNewsw2v 140.3 6.5 1.7

SSASGNS 118.6 6.9 1.6

Table 6.12: Statistics of HARE outputs on SSA 1,200-document corpus, including
mean number of segments (Seg.) per document and number of tokens (Tok.) per
segment, with the mean proportion of the tokens in each document tagged as relevant,
broken down into CE and HIT subsets. Results are given using raw scores, binarized
at 0.5, without Viterbi smoothing.

observed. Local context is insufficient to capture these pragmatic implications in the

absence of prior knowledge about template format or current section; finding system-

atic ways of incorporating this knowledge into relevance estimation systems represents

a significant area for further work on improving AI-assisted tools for evidence review.

Finally, as our document sets varied considerably in length, we investigated how

relevance annotation scales to larger documents. Table 6.12 shows statistics for rel-

evance annotations of the 1,200 document dataset. While the number of segments

annotated as relevant increases on average for the longer HIT documents, the frac-

tion of document text annotated as relevant decreases considerably, demonstrating

that the relevance tagging model successfully ignores much of the irrelevant data

introduced in the longer documents.

6.3.5 Discussion and limitations

Our experiments, while yielding compelling results, are simulations of real doc-

ument review workflows. In order to evaluate potential utility for operationalizing
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AI-assisted tools such as relevance tagging within real-world disability adjudication

at SSA, two clear next steps are needed. First, this work can be extended to other

types of functional status information, either by developing multiple expert relevance

taggers (e.g., one for mobility, another for domestic life activities, etc) and combin-

ing their output, or developing multi-stage models to gradually zero in on specific

information of interest for an individual’s claim. Second, a usability study and/or

randomized controlled study should be conducted to evaluate whether disability ad-

judicators find integrating AI-assisted tools into the adjudication process helpful, and

whether this integration results in meaningful process improvements.

Outside of the SSA setting, the potential utility of research on retrieving functional

status information like mobility is limited by a lack of appropriate data. The SSA

records used in this study were heterogeneous in length, contents, source provider,

and document type, but are subject to stringent data privacy protections. Similar

protections apply to US Department of Veteran’s Affairs data, another data source

supporting valuable research in clinical outcomes (Shao et al., 2016). More accessible

data sources, such as MIMIC (Johnson et al., 2016), are either from a single institution

(and often a single specialty) or lack data relevant to functional status. Efforts to

develop more diverse and accessible data sets about functional status will significantly

contribute to research such as ours by facilitating easier comparison of systems and

enabling a broader body of researchers to be involved.

A few limitations in our experimental evaluations should also be discussed. While

our study was intended as a proof of concept for supporting evidence review with

NLP, and data privacy and a lack of appropriate models made identification and

use of relevant baseline methods difficult, it is quite possible that other methods
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would yield superior results for any of our three experiments. We therefore cannot

make claims beyond potential utility, but by using a published method with publicly-

available embedding features, our results can at least serve as a baseline for further

research on evaluation and system comparison in similar settings.

Finally, two specific characteristics of the SSA documents we used affected our

experimental results. Our filtering process of the OCRed portions of our documents

only removed documents that were unreadable, leaving many documents with small

amounts of remaining OCR noise; in all cases, line breaks were also introduced by the

OCR process. OCR errors impacted model performance slightly, leading to “relevant”

tags such as “1-6-4;e2aw” that were included in relevance evaluation. Additionally,

we did not distinguish in our document set between documents associated with dif-

ferent disability claimants; in a practical setting, document ranking would be applied

to triage the records for a specific individual, which might affect the ranking quality.

6.4 Conclusions

Well-chosen learned representations exhibit significant utility as input features for

neural models of functional status information extraction. We have demonstrated that

domain-representative embedding features improve the performance of off-the-shelf

models for information extraction, and that tailored models focusing on word-level

representations help to address the challenges of long, complex strings and variable vo-

cabulary in FSI. Our experiments on Social Security Administration data demonstrate

significant potential for deploying AI-assisted support tools in a benefits adjudication

setting focused on functional status. In the next chapter, we present work addressing
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the next step in the information extraction pipeline: normalization of identified text

spans to domain-relevant concepts.
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Chapter 7: Using Concept Representations for Semantic

Grounding

After locating information for extraction, the next step in document processing

is to identify the kinds of information extracted. Within a restricted domain, this

typically translates into concept normalization, i.e., assigning a standardized unique

identifier to each mention of a given concept, in order to connect information agnostic

of surface form. This chapter presents a method for concept normalization utilizing

learned representations of domain concepts, including our method described in Chap-

ter 5. Section 7.1 introduces the normalization model and provides proof-of-concept

experiments on word sense disambiguation. Section 7.2 describes our application of

this model to clinical concept normalization in Track 3 of the the 2019 n2c2 Chal-

lenges, and Section 7.3 presents results on identifying the type of functional activity

described in mobility activity reports.42

7.1 PROSE: Word sense disambiguation with projected sense
representations

Identifying the correct sense of words in context is a fundamental and long-

standing challenge in natural language processing (NLP). Recent technologies for

42Portions of Section 7.1 have previously been submitted for publication and are currently in
revision.
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Figure 7.1: Illustration of PROSE intuition: using projectors φ1 and φ2 to map sense
embeddings from two spaces (M1 and M2) into the same space as context T for
disambiguation.

generating context-sensitive vector representations for words have shown significant

promise for word sense disambiguation (WSD) (Peters et al., 2018). However, recent

state-of-the-art results in WSD have been obtained by task-specific models that do

not utilize contextualized embedding features (Uslu et al., 2018; Kumar et al., 2019).

This begs the question of what dedicated WSD models contribute over and above

what contextualized embeddings encode, and whether these approaches capture con-

tradicatory or complementary information.

In this study, we present PROSE, a straightforward model based on Projecting

Sense Embeddings, that effectively combines recent advances in sense representation

(Pakhomov et al., 2016; Camacho-Collados et al., 2016; Newman-Griffis et al., 2018)

with contextualized embedding features. We demonstrate that PROSE improves re-

sults over contextualized embeddings alone on both benchmark WSD datasets and

a low-resource biomedical application, and we achieve benchmark WSD results com-

parable to dedicated state-of-the-art models. Additionally, our approach builds on

recent success in zero-shot WSD (Kumar et al., 2019) by combining sense embeddings
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from multiple sources (as illustrated in Figure 7.1) to capture complementary infor-

mation; by using general-purpose sense embeddings instead of a task-specific model,

we are able to achieve similar gains on zero-shot senses with a more parsimonious ap-

proach. Our results show that PROSE successfully leverages the diversity of different

sense embedding approaches to improve disambiguation, and that its main limiting

factors are a lack of embeddings for some correct senses and a preference for generic

senses.

7.1.1 Related Work

Contextualized word embedding models such as ELMo (Peters et al., 2018) and

BERT (Devlin et al., 2019) have proven useful across many NLP tasks. However,

while word embedding features have been used extensively in WSD (Pedersen, 2010;

Iacobacci et al., 2016), contextualized embeddings have not yet been systematically

incorporated. Many significant WSD advances have leveraged a variety of expert

knowledge sources in addition to lexical features, such as dictionary definitions (Lesk,

1986) and WordNet features (Navigli et al., 2011); McInnes and Pedersen (2013)

summarize relevant approaches in the biomedical domain.

Sense embeddings offer an approach to capture some of this expert knowledge

while supporting dense vector space operations. Embeddings of senses and knowledge

base entities have been derived from graph structure (Grover and Leskovec, 2016),

dictionary definitions (Pakhomov et al., 2016), lexical statistics (Camacho-Collados

et al., 2016), and task-specific encoding models (Kumar et al., 2019), among others.

Different embedding methods have been shown to capture complementary information

for WSD (Newman-Griffis et al., 2018). Our approach was designed to combine the
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Figure 7.2: Diagram of MatrixMult PROSE projector; one projector φm is trained for
each embedding method m ∈ M used, and projector outputs are averaged for final
sense embeddings.

strengths of different sense embedding sources in order to maximally leverage the

information encoded in contextualized embedding features.

7.1.2 Disambiguation Model

Given an ambiguous word w in some context (either a fixed window of words on

either side or a complete sentence), let C denote the vector embedding of the context,

and S = s1 . . . sn be the embeddings of the n candidate senses for w. In this work,

we assume that senses are given a priori, using a knowledge source such as WordNet.
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jector configurations.

Projection model

We define a projection function φ that takes a t-dimensional context vector C and

d-dimensional sense vector s and produces a projected t-dimensional sense vector ŝ:

φ : Rt × Rd −→ Rt (7.1)

The same φ is applied to each sense representation to create ŝ1 . . . ŝn. We consider

four configuration of φ, detailed in the following paragraphs.
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MatrixMult We define two feed-forward neural networks (FFNN) to produce vec-

tors u ∈ Rd and v ∈ Rt:43

u = FFNNL(C, s) (7.2)

v = FFNNR(C, s) (7.3)

The outer product of these two vectors forms d × t matrix W , which is used to

transform s:

W = u⊗ v (7.4)

ŝ = Ws (7.5)

This approach, shown in Figure 7.2, captures cross-correlation between features in

sense and context embeddings, and supports differing vector dimensionalities.

Re-weighting Our second configuration (Figure 7.3) uses one FFNN to produce a

re-weighting vector w for s:

w = FFNN(C, s) (7.6)

ŝ = s ∗ w (7.7)

This transforms each feature of the sense embeddings independently, in order to focus

on context-specific linear subspaces. While the MatrixMult approach can support any

dimensionalities d and t, this method requires that t = d.

Residual Our third configuration calculates a residual vector that is added to s,

instead of multiplying it. This allows adjustment of sense embedding features relative

43We experimented with a single FFNN to produce the concatenation of u and v, but it consistently
underperformed the two-FFNN approach. Learning to project the W matrix directly required too
many parameters to be practical.
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to the origin, directly affecting cosine similarity.

ŝ = s+ FFNN(C, s) (7.8)

Direct Our final configuration only uses the sense embeddings as input, and di-

rectly predicts a new embedding vector for each candidate sense.

ŝ = FFNN(C, s) (7.9)

In all configurations, the FFNN is of arbitrary depth, hidden state dimensions, and

activation function.

Combining multiple representations

For multiple representation spacesM1 . . .Mk, we define separate projectors φ1 . . . φk

for each; with the MatrixMult and Direct formulations, this allows us to combine

representations from spaces with different dimensionalities. The final projections are

then calculated as an average of the outputs of individual projectors:

ŝi =
1

k

[
φ1(C, s1

i ) + · · ·+ φk(C, s
k
i )
]

(7.10)

Scoring model

Using projected sense representations ŝ1 . . . ŝn, we calculate a normalized scoring

distribution for the candidate senses using the vector similarity-based linear model of

Sabbir et al. (2017):

ψ(S, T ) = softmax
si∈S

[
cos(C, si) ∗

||C|si ||
||si||

]
(7.11)

where C|si denotes the vector projection of C onto si, and ||si|| denotes the vector

norm of si. Note that this model requires that the context and sense vectors be of

the same dimensionality.

215



Loss function

Given labeled triples as 〈T, S, y〉, where y is a one-hot vector indicating the correct

sense from the candidates, we train our model with cross entropy:

L(T, S, y) = −
n∑
i=1

yilogψi (7.12)

Under this formulation, the “label” set for cross entropy training changes from sample

to sample (as it is the set of candidate senses for a given word); however, the only

learned components of our model are the neural networks in φ, which operate on

single embedding vectors and are weight-tied over the set of candidates.

7.1.3 Data

Our model requires three types of input data: sense-annotated datasets, embedded

context representations, and embedded sense representations. Each are detailed in

the following subsections.

Datasets

We use the WSD evaluation framework of Raganato et al. (2017a), which uses five

benchmark WSD datasets for evaluation, and provides a separate large-scale corpus

for model training; all corpora are annotated with WordNet 3.0 sense keys. Statistics

for all datasets are provided in Table 7.1.

SemCor (Miller et al., 1994) is a large subset of the Brown corpus, annotated with

WordNet senses; this dataset is used for model training only.

SensEval-2 (Edmonds and Cotton, 2001) contains sense annotations from the

British National Corpus and the Wall Street Journal (WSJ) sections of the Penn

Treebank.
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Dataset # Types # Senses # Samples

SemCor (Train) 22,436 33,362 226,036
SemEval-07 (Dev) 330 375 455

SensEval-2 1,093 1,335 2,282
SensEval-3 352 1,167 1,850
SemEval-13 751 827 1,644
SemEval-15 512 659 1,022

Test (no SemEval-07) 2,654 3,447 6,798

Table 7.1: Sense-annotated datasets for WSD datasets; Types denotes the number of
unique lemma/POS combinations.

SensEval-3 (Snyder and Palmer, 2004) contains annotations from WSJ and the

Brown corpus.

SemEval-2007 Task 17 (Pradhan et al., 2007) also contains WSJ and Brown corpus

annotations; as the smallest evaluation dataset, we follow Raganato et al. (2017b) in

holding this dataset out for development and using the other four sets for test.

SemEval-2013 Task 12 (Navigli et al., 2013) uses the English portions of thirteen

sense-annotated multilingual news articles.

SemEval-2015 Task 13 (Moro and Navigli, 2015) contains multilingual sense-

annotated data from diverse domains; we restrict ourselves to the English portions.

Context embeddings

Following Peters et al. (2018), we calculate representations of ambiguous contexts

using the second bLSTM layer of a pre-trained ELMo model.44 All datasets in the

44We used the 1B Word Benchmark model of Peters et al. (2018), available at https://allennlp.
org/elmo.
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WSD evaluation framework are pre-sentence chunked and tokenized; for a given am-

biguous word w at position i in sentence S, we pass S to ELMo and use the hidden

state of the model at index i as the context representation.

Sense representations

We use four approaches to represent WordNet senses, each using a different knowl-

edge source.

SemCor embeddings follow the method of Peters et al. (2018); we embed sentences

in SemCor with ELMo, and retrieve the hidden state of the second bLSTM layer at

the index of each sense annotation. For each unique word sense, we average the

bLSTM states over every occurrence of that sense throughout the corpus.

Definition embeddings are created using the human-written definitions, or glosses,

for senses provided in WordNet. For each unique synset, we retrieve its definition and

pass it through ELMo, and then average the hidden states of the second bLSTM layer

across all words in the definitions. For compatibility with dataset annotations, these

are then mapped to the synset’s default sense key.45

WordNet embeddings are derived from the graph structure of WordNet. We de-

fine the graph G = (V,E), where V is the set of synsets in WordNet, and edge

(s1, s2) ∈ E if synsets s1 and s2 are connected by hypernymy, hyponymy (edge weight

1.0), meronymy, or holonymy (edge weight 0.5). We then run node2vec (Grover and

Leskovec, 2016) over this graph to learn 1024-dimensional embeddings, using default

values for all other hyperparameters.

45This is a slightly lossy mapping, as we use the key of a synset’s first lemma, and not all sense
keys annotated in SemCor correspond to the default lemmas.
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NASARI Camacho-Collados et al. (2016) developed multilingual sense embed-

dings, derived from pre-trained word embeddings and global lexical statistics. We

use 300-d NASARI embeddings trained on the UMBC corpus,46 and map them from

BabelNet synsets to WordNet 3.0 synsets.

7.1.4 Experiments

For all experiments, we used a 1-layer DNN with ReLU activation47 and trained

our model using minibatch gradient descent with Adam optimization and a minibatch

size of 5. After each training epoch, we evaluated cumulative cross-entropy loss over

development data, and used early stopping with patience to stop training. After

halting, we evaluated our best-performing model from dev on test data.

We randomly sampled 10% of SemCor data (stratified by label) as held-out de-

velopment data for model training; SemEval 2007 was used as a second development

set for hyperparameter tuning, as it captures generalization performance better than

SemCor data. We use an early stopping threshold of 1e-4, and patience of 5 epochs.

Handling unseen lemmas and senses

Two types of out-of-vocabulary (OOV) issues arose in our evaluation: unseen

lexical forms and unknown senses. In prior work, the set of candidate senses for a

given lemma and part-of-speech (POS) tag is determined by the training data; if a

new lemma/POS combination is seen at test time, it is considered OOV and backoff

to the first synset returned by WordNet is used (Raganato et al. (2017b); Iacobacci

et al. (2016), inter alia).

46http://lcl.uniroma1.it/nasari/

47We compared 0-3 hidden layers, with ReLU, sigmoid, and linear activations. Residual final layer
is always linear.
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Embeddings VecSim MM RW Res Dir

SemCor (SC) 56.3 62.9 62.6 60.4 62.9
Definitions (Defn) 39.6 54.3 56.3 54.5 56.3

WordNet (WN) 31.2 54.9 53.8 54.5 54.3
NASARI – 53.2 – – 53.0

SC+Defn 48.4 59.3 61.8 61.5 62.6
SC+WN 48.1 59.8 59.6 61.8 61.5

SC+NASARI – 59.6 – – 61.8

SC+Defn+WN 49.9 64.6 60.2 60.0 63.3
SC+Defn+NASARI – 60.9 – – 60.4

All – 63.3 – – 61.1

Table 7.2: Macro F-1 on WSD dev set (SemEval-07) senses with different PROSE
configurations, including different sets of sense embeddings; the best configuration
for each set is underlined, and the best overall result bolded. For brevity, we only
report combinations of n+ 1 embeddings using the best choice of n embeddings. Re-
weighting, Residual, and linear scorer results are not given for NASARI, due to its
different vector dimensionality. VecSim=vector similarity baseline, MM=MatrixMult,
RW=Re-weighting, Res=Residual, Dir=Direct.
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In our approach, the set of available senses is determined by the sense embeddings

used. SemCor embeddings followed prior work; for other embeddings, we took the

POS tag and default lemma for the sense as “in vocabulary”. Thus, at test time, a

lemma/POS combination was only OOV if it was not covered by any of our input

sense embeddings; we used WordNet first sense backoff in these cases.

Finally, for any given lexical form, not all senses were covered by all of our eval-

uated sense embeddings. Since the combined sense projection s′ is aggregated over

the individual projections s′a, we replaced any senses that are OOV for an individual

embedding set with a zero vector, so that s′ is derived only from the sets that include

the target sense. During training, any samples that were OOV for all embedding

sets used were discarded from both train and dev. All samples were evaluated at test

time, regardless of coverage.

Experimental results

Comparing PROSE configurations across different combinations of embedding sets

for SemEval-2007 WSD in Table 7.2, the MatrixMult setting most consistently yielded

the best dev set results (3/6 comparisons to Re-weighting and Residual). Interest-

ingly, SemCor senses embedded with ELMo outperformed any single set or pair of

embeddings on development data,48 but combining SemCor, definitions, and WordNet

graph embeddings (with or without NASARI) increased dev performance.

Table 7.3 shows WSD performance across the four test sets and by POS tag within

the concatenation of all test sets. We compared against two baselines: WordNet first

sense (WNFS) and the unprojected vector similarity model of Sabbir et al. (2017),

using ELMo-derived SemCor embeddings to measure performance of contextualized

48This also held for other single embedding sets.
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features without learned projection. For word expert approaches, in which a separate

model is trained for each surface form, we compared to individual sense embeddings

directly tuned during training (instead of using a shared projection) and the strongest

prior expert approaches (Iacobacci et al., 2016; Papandrea et al., 2017), which train

one SVM per lemma/POS pair using POS tags, unigram features, and collocations

of surrounding words together with summed embeddings of context words with expo-

nential decay. Finally, for neural models, we compared with Raganato et al. (2017b),

who use a bi-LSTM with attention and auxiliary objectives, Luo et al. (2018), who

use a hierarchical co-attention network with word context and sense gloss informa-

tion, fastSense (Uslu et al., 2018), which uses averaged word embeddings to train a

multi-label feed-forward neural model that ranks candidate senses,49 and Kumar et al.

(2019), who learn bi-LSTM encoders for context and sense embeddings. All compar-

ison methods use WNFS backoff for OOV forms,50 except for Luo et al. (2018), who

omit OOV forms51 (we compared against augmenting their results with WNFS back-

off for parity) and Kumar et al. (2019), who use sense definitions to handle OOVs.52

PROSE performed competitively overall, with the best configurations achieving

overall F1 within 0.5 of the much more complex state-of-the-art approach, yielding

49Uslu et al. (2018) use SensEval-2 for hyperparameter tuning, instead of SemEval-2007; results
on these datasets are thus not directly comparable.

50T. Uslu, personal communication

51F. Luo, personal communication

52Following Raganato et al. (2017b), we did not include Yuan et al. (2016) in our comparison, as
neither their models nor their training data are publicly available for replication on the benchmark
test sets.
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SE07 SE2 SE3 SE13 SE15 All

OOV Samples 20 243 107 202 98 650
Covered 16 194 66 113 74 447

OOV Senses 19 103 91 132 65 768
Covered 15 64 53 78 45 557

WNFS 75.0 94.8 74.2 76.1 79.7 80.0
DF (A) 56.3 81.4 77.3 87.6 79.7 82.9

SC+DF (A) 50.0 80.9 74.2 81.4 77.0 80.1
SC+DF+WN (MM) 62.5 78.9 75.8 85.8 75.7 80.3

All (MM) 81.3 80.9 78.8 85.0 77.0 81.5

Table 7.4: Generalization evaluation in WSD experiments. Macro F-1 % is reported
on OOV lemma/POS combinations and gold senses (w.r.t. SemCor) covered by Word-
Net definition embeddings, for the best-performing PROSE configurations of embed-
ding combinations. A=Re-weighting, MM=MatrixMult. Some samples have multiple
valid senses.

state-of-the-art F1 of 70.4% on SemEval-2013, and consistently outperforming sev-

eral recent neural models on multiple datasets.53 Comparing against contextualized

baselines, PROSE projection of SemCor embeddings consistently outperformed both

linear scoring without projection and tuning sense embeddings directly, indicating the

value of augmenting contextualized features with a learned projection model. Incor-

porating multiple sets of sense embeddings yielded improved dev set performance, but

only sometimes improved test results: the combination of SemCor senses, WordNet

definitions, and WordNet graph embeddings only outperformed SemCor alone under

the MatrixMult configuration, and tied SemCor senses alone with the Re-weighting

setting for the highest overall performance.

53Uslu et al. (2018) did not report results on the concatenated test set.
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Zero-shot disambiguation

An additional strength of a sense embedding-based approach is support for zero-

shot disambiguation of arbitrary lemma/POS combinations. We identified the sam-

ples in each evaluation set that are OOV with respect to SemCor lemmas, requiring

backoff to WordNet in most prior supervised approaches. Of these samples, we iden-

tified the subsets covered by using different sense embedding sets with PROSE, and

compared WSD performance on these subsets to the WNFS baseline.

Table 7.4 shows the results when we used WordNet definition embeddings, alone

and combined with other sets. These embeddings covered over half of the OOV

samples in the evaluation sets. On SemEval-2007, SensEval-3, and SemEval-2013,

our model outperformed the baseline by a large margin on the covered samples, and

tied it on SemEval-2015. Notably, comparing across the four test sets combined, our

model beat the WordNet first sense baseline by 2.9% macro F1.

7.1.5 Analysis

We have shown that a neural projection model can effectively combine contextual-

ized embedding features with diverse sense embeddings to achieve WSD performance

on par with state-of-the-art methods, and can successfully disambiguate lexical forms

not seen during training. Analysis of our results suggests some interesting areas for

improving use of sense embeddings for disambiguation.

Challenges in highly ambiguous words

Not all ambiguous words are equal: the verb discuss has two senses in WordNet,

but the verb change has ten to choose from. As might be expected, our model’s per-

formance tends to decrease as the number of candidate senses for a word increases.
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Review of model predictions on development data highlights an interesting contribut-

ing trend: our approach tends to assign higher weights to more generic and/or literal

classes. For example, for “among the problems, the one at HUD,” the numeric sense

of “one” is given 78% probability, but the correct sense of “a single person or thing”

only 22%. Multiple generic senses can share output scores: in “I had to reach back to

French 101,” reaching a destination was scored 26% likely, reaching physically upward

25%, and the correct sense “to extend as far as” only 5%.

This genericity preference varies by context. One example of the verb “follow,”

referring to following progress, led to misprediction of “to travel behind;” another

referring to a sequence of events was mispredicted as “be next;” and one referring to

following someone’s lead was correctly predicted by a low margin over “choose and

follow [a theory].” This suggests that distinguishing literal and figurative language

is an important area to improve WSD. In cases where a word is more likely used

figuratively, more generic senses can be downweighted in favor of figurative ones.

Embedding synthesis and zero-shot analysis

The generalization results in Table 7.4 are strong in many cases, but demonstrate

clear remaining areas of improvement. Many of the samples we successfully disam-

biguate have only one corresponding sense in our embeddings; by the same token,

many of our incorrect predictions are due to not having an embedding for the correct

sense. However, a reasonable portion of OOV samples had multiple valid candidates,

and we find clearly more of these samples to be disambiguated correctly in our re-

sults. Going from one set of sense embeddings to multiple sets has surprisingly little

effect on final predictions for OOV samples, but as shown in Figure 7.4, it noticeably

increases the model’s confidence in its predictions, both correct and incorrect.

226



Figure 7.4: Mean success/error margins with PROSE, measured between scores as-
signed to correct sense and next most likely sense (for correct predictions) or correct
sense and highest-scoring sense (for incorrect predictions), for OOV samples within
each dataset. Error bars indicate standard deviation.

The model is also able to successfully synthesize across projected embeddings,

whether or not each individual projection yields the correct prediction. As shown in

Figure 7.5, over 60% of the correct predictions made by PROSE with all four sets of

embeddings involved projections where only one or two of the individual embedding

sets yielded the correct answer, and 6% of the time the model made the correct

prediction when none of the individual projections did. However, the likelihood of

producing an incorrect overall answer increases as the number of projected embedding

sets with the correct answer decrease; 70% of the incorrect predictions made by our

model involved either zero or only one of the projected embedding sets producing the

correct answer.

7.1.6 Conclusion

Contextualized word embedding methods provide powerful features for word sense

disambiguation, but have not systematically been leveraged in recent WSD models.
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Figure 7.5: PROSE successes/failures by number of contributing embedding sets;
using PROSE MatrixMult (All).

We have demonstrated that contextualized embeddings can be effectively combined

with sense embeddings via a context-sensitive projection method to achieve compa-

rable performance to complex, task-specific state-of-the-art WSD models and enable

zero-shot disambiguation of unseen lemmas. Further, our demonstrated gains on both

benchmark WSD datasets and a low-resource biomedical coding task illustrate the

generalized value of combining contextualized embedding features with targeted dis-

ambiguation models. Analysis of our system outputs showed that our system is able

to leverage sense embeddings from diverse knowledge sources, and highlighted figu-

rative language as an outstanding challenge for improving our model’s performance.

Our code, trained models, and associated data will be made available online.

7.2 Application to medical concept normalization

Medical Concept Normalization (MCN) is the task of assigning canonical identi-

fiers to text mentions of medical concepts, in order to unify different ways of referring
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n2c2 2019 SemEval-2015 Task 14
Train Test Train Test

Documents 50 50 298 133
Samples 6,684 6,925 11,554 8,003
CUI-less 151 217 3,478 1,930
Distinct CUIs 2,330 2,578 1,355 1,143
CUI overlap 1,117 628

Table 7.5: Datasets used for PROSE MCN experiments. Both datasets are split
into training and test data at the document level; the number of documents, medical
concept mentions, CUI-less mentions, and unique CUI labels are given for each, along
with the number of CUIs overlapping between training and test.

to the same concept. MCN has historically been studied jointly with medical Named

Entity Recognition (NER) (Elhadad et al., 2015), but some recent shared tasks have

investigated NER and MCN as separate components of information extraction (Prad-

han et al., 2014; Uzuner et al., 2019). In this study, we investigated the application of

our PROSE model to MCN, as part of participating in the 2019 n2c2/UMass Shared

Task on Clinical Concept Normalization (Uzuner et al., 2019).

7.2.1 Datasets

In addition to the dataset for the n2c2 2019 shared task, we leveraged data from

the previous SemEval-2014 Task 7 challenge, in order to pretrain our normalization

models on a greater diversity of data. Brief descriptions of each dataset are given

below, and summary statistics are given in Table 7.5.

n2c2-2019 Track 3

The n2c2 2019 MCN dataset was originally developed by Luo et al. (2019) in

order to complement the narrow focus of previous MCN datasets, which had only
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included disorder-related information (Uzuner et al., 2011; Elhadad et al., 2012).

The dataset of Luo et al. (2019), which they simply called MCN to reflect the task

it was intended for, included 100 documents from the 2010 i2b2 challenge on medical

information extraction (Uzuner et al., 2011). These documents had been annotated

to identify all mentions of medical problems, treatments, or tests; Luo et al. (2019)

further annotated these mentions to assign Concept Unique Identifiers (CUIs) from

the 2017AB release of the Unified Medical Language System (UMLS) (Bodenreider,

2004), using the SNOMED-CT and RxNorm vocabularies. The documents were split

into 50 for training and 50 for testing, maintaining similar CUI distributions between

train and test.

The breadth and complexity of medical concepts in the UMLS means that MCN

annotation is never straightforward. Luo et al. (2019) describe several approaches to

addressing annotation challenges, two of which are particularly relevant to highlight

here. First, annotators were asked to normalize each mention using only the mention

text whenever possible, and incorporate context only when the mention text was not

sufficient to identify a unique CUI—i.e., in the cases of ambiguous (or uninformative)

strings. Second, mention texts describing a compositional concept (e.g., “left breast

biopsy”) were split into multiple mentions such that each mention could be normalized

to a unique CUI (e.g., “left”, “breast biopsy”). Thus, all mentions have exactly one

CUI annotated, and mentions were only labeled as “CUI-less” when an appropriate

concept could not be found in either SNOMED-CT or RxNorm.

SemEval-2015 Task 14

The ShARe corpus is a collection of 531 EHR documents collected from the Mayo

Clinic, different subsets of which have been used as the source for a variety of shared
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tasks in clinical NLP (Mowery et al., 2014; Pradhan et al., 2014; Elhadad et al., 2015).

These documents, including discharge summaries and echocardiogram, electrocardio-

gram, and radiology reports, have been annotated for a variety of tasks, including

MCN. The most recent shared task using these data for MCN was SemEval-2014

Task 15 (Elhadad et al., 2015), which used 431 documents for training and 100 for

testing. As our use of ShARe corpus data was as additional training data for the

n2c2 2019 task, we restricted our experimentation to the training data only, and used

as training/development sets the splits from SemEval-2014 Task 7 (Pradhan et al.,

2014), which formed the full training set for the later shared task.

These documents were annotated only for disorder-related concepts, restricted

to the SNOMED-CT vocabulary (Elhadad et al., 2012). Compositional mentions

and mentions that could not be assigned a disorder-related SNOMED-CT CUI were

marked as “CUI-less”, covering a relatively large portion of the dataset (Osborne

et al., 2018). There is relatively low overlap in both strings (shown in Table 3.8) and

CUIs between these data and the n2c2 2019 task data: only 405 CUIs are present in

both SemEval-2015 Task 14 data and n2c2 2019 training data. Nonetheless, given the

number of novel (i.e., not observed in training) CUIs in the n2c2 2019 test data, we

hypothesized that these additional training data would improve generalization power

for our MCN models.
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7.2.2 Methods

Controlled vocabularies aim to capture diverse natural language expressions used

to refer to standardized concepts, making them a powerful first step for MCN. How-

ever, they are not exhaustive—the productivity of language means that new expres-

sions can emerge to refer to standardized concepts—and any given expression may

be ambiguous (or multi-referent) between multiple distinct concepts. Thus, we can

consider three contributing factors to normalization outside of controlled vocabulary

match: (1) reference with novel expressions, (2) expressions that refer to multiple

concepts (e.g., compositional expressions), and (3) ambiguous expressions.

Mention matching heuristics

The datasets used in our experiments addressed compositional expressions in the

annotation phase, removing this problem from a modeling standpoint. For the prob-

lem of novel expressions, two contributing factors that can be addressed heuristi-

cally are institutional terminology specific to local practitioners and lexical reorder-

ing/adjustment of multi-word expressions (e.g., “gait is antalgic” vs “gait, antalgic“

vs “antalgic gait”). As the shared task dataset is from a single document collection,

we follow Luo et al. (2019) in using matches from the training data as a way to

capture dataset-specific expressions. To help address lexical variations, we utilized

MetaMap (Aronson and Lang, 2010), which includes a number of heuristics for string

matching.

Neural normalization with PROSE

Finally, to help address both the problems of ambiguity and expressions that could

not be normalized through the above heuristics, we utilized our PROSE model as the
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final component of our system. This enabled us to use representation-based features to

choose between candidate CUIs without limiting our model to string-based matches.

In contrast to a pure neural classifier, however, in which candidate CUIs would be

treated as orthogonal labels and all relevant information learned from supervised

signal in the task, using PROSE allowed us to leverage CUI representations learned

from diverse sources as an informed starting point for neural normalization.

Candidate CUI selection strategies As PROSE is formulated as a learned

similarity scorer between text representations and a set of candidate sense represen-

tations, we utilized two approaches to identify the set of candidate senses (here, CUIs)

to consider for a given mention. To address samples where the mention string par-

tially corresponded to known medical terms (ambiguous strings, but also lexical edits

or extra words), we queried the UMLS REST API with the mention string, using the

word-level approximate search setting. This search type includes some lemmatiza-

tion, and returns CUIs in decreasing similarity order to the query; we chose the top

3054 CUIs as our candidate set.

Some mention strings did not yield any CUIs from UMLS query, due to mis-

spellings, genericness, or string complexity. In these cases, we backed off to choose

between all 434,056 CUIs in SNOMED-CT and RxNorm. This backoff strategy was

only used at test time, as the time required to calculate projection-based similarity

to all CUIs was impractical for model training; these samples were instead dropped

from the training data.

54Empirically-chosen; 100 CUIs (and higher values) did not appreciably increase hit rate for in-
cluding the correct CUI, and significantly decreased performance.
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Embeddings Method Data # CUIs

PubMed JET PubMed 2018 baseline 89,713
Graph node2vec UMLS knowledge graph 420,892

Definitions Word averaging UMLS definitions 192,313

Table 7.6: CUI embeddings used for n2c2 2019 shared task. The method and data
used to generate the embeddings are given, along with the number of SNOMED-
CT and RxNorm CUIs covered in each set. SNOMED-CT and RxNorm encompass
434,056 CUIs in total.

CUI and text representations In order to utilize different types of biomedi-

cal knowledge in our model, we provided CUI representations learned from multiple

sources as inputs to PROSE; these representations are summarized in Table 7.6.

PubMed abstracts To capture information about usage of medical concepts in text,

we used our JET toolkit (Newman-Griffis et al., 2018) to learn CUI representations

from the 2018 PubMed baseline, using all terms from Level 0 vocabularies (plus

SNOMED-CT) in the 2017AB release of the UMLS.

UMLS graph To capture hierarchical relationships between UMLS concepts, we

extracted the graph structure captured by PAR and CHD relations in the UMLS,

and trained CUI representations on the graph with node2vec (Grover and Leskovec,

2016).

UMLS definitions Expert-written definitions are included in the UMLS for a sub-

set of concepts. These definitions have been utilized as a source for generating concept

representations in previous work, by averaging embeddings for every word in each def-

inition (Pakhomov et al., 2016). We follow Pakhomov et al. (2016) to create extended

definitions for each CUI by concatenating the definitions of all parent, children, and
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sibling CUIs. Each CUI’s representation is calculated by averaging its definition and

50%-weighted extended definition (where present).

Mention representations We experimented with two different methods for repre-

senting the context of each concept mention: static and contextualized embeddings.

For static features, which are less powerful but capture lexicalization, we used 300-

dimensional word embeddings trained jointly with our PubMed CUI embeddings us-

ing JET, and represented each mention by averaging the embeddings of each word

in a fixed context window around the mention, along with the text of the mention.

For contextualized features, we used 768-dimensional clinicalBERT (Alsentzer et al.,

2019) to embed the full line containing the mention and average the token-level em-

beddings for the mention.

We generated two versions of each of our sets of CUI embeddings, for use with

each mention representation method. Definition and string CUI embeddings were

generated using JET word embeddings and clinicalBERT directly; for PubMed and

UMLS graph embeddings, we re-ran JET and node2vec to generate 300-dimensional

and 768-dimensional embeddings.

Ensembling models with different features In order to leverage the rela-

tive strengths of static and contextualized features, and to capture information from

different context window sizes, we experimented with ensembling multiple PROSE

models. We utilized both simple similarity averaging across models and a learned

combination, using either a feed-forward neural network to rescore or a random for-

est to choose which model’s scores to use. Our models for ensembling included four

static embedding models, using window sizes 15, 50, 75, and 100, and a BERT model

(which has no variable context).
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Training details All PROSE models were trained for 50 epochs, using all train-

ing set mentions with candidate CUIs retrieved using UMLS API query. As UMLS

query may not include the correct CUI for some mentions among the candidates re-

turned, meaning these samples cannot provide any training signal, we filtered out

these mentions during training. We used a 1-layer PROSE architecture with the

Residual configuration, with hidden layer size matching the input embedding size.

We experimented with pre-training PROSE models using the SemEval-2015 Task

14 training data. For each model configuration used on the n2c2 2019 data, we pre-

trained a model with the matching configuration on SemEval-2014 Task 14 data,

using the same 50 epoch training scheme. The resulting model parameters were then

used to initialize the weights of the model trained on n2c2 2019 data.

PROSE-only experiments To compare our various PROSE models and ensem-

bling strategies, we ran 5-fold cross-validation experiments on the n2c2 2019 training

data, and reported micro-averaged accuracy across folds. We compared the following

experimental variables:

Feature configuration: comparing static and BERT input features, and different

window sizes for static representations;

Pretraining: comparing PROSE models with and without pre-training on SemEval-

2015 Task 14 data;

Ensembling strategies: comparing different combinations of individual PROSE

models, using score averaging and machine learning approaches.

After identifying the best combination of PROSE models for both PROSE - Men-

tion and PROSE - All sieves, we added our first three sieves into the system for final

evaluation on training data and submission of test data results for the shared task.
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Normalization system overview

Our full system consisted of six sieves, each of which covered a cumulatively

increasing portion of the dataset. If a given mention was covered by an earlier sieve,

we used that sieve’s prediction and did not further process the mention. Our sieve

progression is illustrated in Figure 7.6, and described briefly below. Our first three

sieves follow the described baselines used by Luo et al. (2019).

Exact Match - Training The first stage of our system compares the current sam-

ple’s mention string to all mentions in the training set; if one or more matches are

found that are labeled with a single unique CUI, that CUI is output. We use two

stages of matching: lowercased string, and lowercased string with stopwords removed.

MetaMap Our second stage uses MetaMap (Aronson and Lang, 2010) with term

processing on the mention string; if a unique CUI is produced, that CUI is output.

Exact Match - UMLS The third stage compares the sample’s mention string to

the strings in the UMLS MRCONSO table, following the same normalization steps

as in the Exact Match - Training sieve. Again, if a unique CUI is matched, that CUI

is output; otherwise, the mention string continues to the fourth stage.

PROSE - Mention In our fourth sieve, we query the UMLS API for the mention

string, and pass the top 30 candidates into our trained PROSE model(s) to identify

the highest-scoring candidate. If no results are returned from the API query, the

mention proceeds to the final sieve.

PROSE - All Our fifth sieve is our backoff approach: the mention is passed into

our trained PROSE models to score all CUIs in SNOMED-CT and RxNorm. This

sieve achieves complete coverage of the dataset, but is the hardest to get right.
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CUI EmbeddingsCUI EmbeddingsCUI Embeddings

CUI EmbeddingsCUI EmbeddingsEM-Train
(with common words)

EM-Train
(common words removed)

MetaMap
(term processing)

EM-UMLS
(with common words)

EM-UMLS
(common words removed)

PROSE
(top 30 CUIs from UMLS API)

PROSE-all
(all SNOMED/RxNorm CUIs)

Sieve 1

Sieve 2

Sieve 3

Sieve 4

Sieve 5

Train: 3,359 @ 96.7% -> 48.6%
Test: 3,439

Train: 281 @ 93.2% -> 52.5%
Test: 267

Train: 1,772 @ 78.0% -> 73.2%
Test: 1,821

Train: 237 @ 62.0% -> 75.4%
Test: 306

Train: 11 @ 90.9% -> 75.5%
Test: 5

Train: 678 @ 32.5% -> 78.8%
Test: 732

Train: 346 @ 6.1% -> 79.1%
Test: 355

Context Embedding CUI Embeddings

DNN

Transformed CUI 
Embeddings

Cosine 
Similarity 

Scorer

Linear 
Transform

Predicted CUI

(b) PROSE model diagram(a) Overall system, with training set coverage, cross-
validation accuracy (on covered samples only), and 
cumulative accuracy from adding each sieve.

Baselines

Our model

Figure 7.6: Sieve-based normalization system for n2c2 2019 MCN shared task. The
column at right lists the number of training and test instances covered by each sieve,
along with the accuracy of the sieve on its addressed samples and the overall cumula-
tive accuracy of the system up to that sieve. EM-Train and EM-UMLS are our exact
match heuristics.

7.2.3 Results and analysis

BERT fails in open-ended candidate selection

Figure 7.7 shows the cross-validation performance of our various PROSE models

alone on the n2c2 2019 training data. BERT features yield a notable improvement

over static featuers in the PROSE - Mention setup (involving choosing between up to
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Figure 7.7: Cross-validation accuracy of individual PROSE models on n2c2 2019
training data, using API candidates or all candidates for evaluation.

30 candidates), but fail spectacularly in PROSE - All experiments (involving choosing

between all 434,000 available CUIs). On PROSE - All, BERT features yield 5%

accuracy or less, while static features consistently achieve a respectable 42% accuracy.

While no explanation for this discrepancy is readily apparent, it is clear that static and

BERT features capture some degree of complementary information for our formulation

of the task.

With static representations, pretraining on SemEval-2015 Task 14 data yielded

universal improvement, on both PROSE - Mention and PROSE - All experiments.

With BERT features, however, we observed a slight improvement in PROSE - Men-

tion performance from pre-training, but a significant degradation from 5% to 0.04%

accuracy in PROSE - All experiments.
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Figure 7.8: Cross-validation accuracy of ensembling strategies with PROSE models
on n2c2 2019 training data, comparing single models (first two bars), averaging model
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All results are for PROSE - Mention only.

Ensembling with model averaging significantly improves performance

Cross-validation performance from different ensembling strategies are shown in

Figure 7.8. Combining scores from static and BERT models improves results over

either by 0.8%, strengthening our observations of complementary information from

the two representation methods. While we did not observe any meaningful differ-

ence between different window sizes for generating static input features (Figure 7.7),

combining across window sizes nonetheless improves performance by 0.9%, indicating

some complementarity between what the context windows capture. Combining our

pretrained and non-pretrained BERT models also improved accuracy by 0.4%, sug-

gesting that the two models may have learned different patterns from their different

training data exposures.
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Model
Training

cross-validation
accuracy

Test accuracy

Luo et al. (2019) 77.1 76.4
Baselines 75.5 –

Our system 79.1 78.1

Shared task mean – 74.3
Shared task best – 85.3

Table 7.7: Results on n2c2 2019 shared task. Baselines refers to our reimplementation
of the methods used in Luo et al. (2019); test results are not given for these, as we
did not submit them for evaluation in the shared task.

Combining scores from all six models yielded the best overall performance, in-

creasing accuracy by a further 0.6% or greater over any other combination. We found

that using machine learning to combine model outputs matched but did not exceed

score averaging in the best case; as score averaging is more parsimonious, we therefore

used this as our ensembling strategy.

Shared task performance

As shown in Table 7.7, our full, five-sieve system improved over the published

baseline for the shared task dataset by 2% on cross-validation in the training data,

and 1.7% on the test data. Interestingly, our reimplementation of the baselines using

published details fell 1.6% short of the published performance, suggesting that with

additional corrections, performance on our earlier sieves could be improved, yielding

improved overall performance. In comparison to other participants in the shared task,

we outperformed the mean test accuracy by nearly 4%, but placed well behind the

top performing system.
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Directions for further analysis

Two observations indicate specific directions for further analysis of our results.

First, the behavior discrepancy between static and BERT features, including different

sensitivities to pretraining and BERT’s failure in the PROSE - All setting, indicate

that this is likely to be a fruitful area for analyzing system outcomes. Second, as

observed in Chapter 3, the n2c2 2019 dataset exhibits a very low degree of ambiguity,

but does include distinct types of ambiguity; as our PROSE model is designed with

normalizing ambiguity in mind, further comparison on this subset of the data and

on other MCN datasets with more ambiguity is likely to clarify the strengths and

weaknesses of our approach to the MCN task.

7.3 Classifying mobility activity types

The lack of standardized terminologies for functional activity makes activity nor-

malization a natural fit for a model like PROSE, which does not require any explicit

lists of known surface forms for concepts. Following our experiments on extracting

mobility-related information, described in Chapter 6, we therefore applied PROSE to

the next step of the processing pipeline: normalizing mobility-related activity reports

to ontologically distinct activities in the ICF.

As in Section 6.2, we used an expanded version of the dataset described by Thieu

et al. (2017), encompassing 400 Physical Therapy records from the NIH Clinical

Center. These documents include a total of 4,528 activity reports with reference

to a specified activity; these reports were assigned one of 12 ICF codes identifying

different mobility activities, or an Other label if none of the available ICF codes
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Code Description Frequency

d410 Changing basic body position 838
d415 Maintaining a body position 612
d420 Transferring oneself 522
d430 Lifting and carrying objects 44
d435 Moving objects with lower extremities 5
d440 Fine hand use 10
d445 Hand and arm use 66
d450 Walking 1,603
d455 Moving around 378
d460 Moving around in different locations 176
d470 Using transportation 38
d475 Driving 77
Other – 161

Total 4,528

Table 7.8: Label descriptions and frequencies in mobility activity normalization
dataset. Descriptions given are the preferred name for the code in the ICF (World
Health Organization, 2001).

applied. Table 7.8 provides descriptions of these labels and their frequencies within

the dataset.

7.3.1 Methods

The only previous study on functional activity normalization was by Kukafka et al.

(2006), who used hand-crafted rules to extract and code mentions of a small set of

ICF codes. Thus, particularly since our set of activity labels is quite constrained

in these data (thirteen, not thousands as in MCN), we wanted to investigate both

classification-based approaches and candidate selection-based approaches to the task.

Classification methods

We experimented with several strong baseline methods for classifying mobility

activity reports, including k-Nearest Neighbors (k-NN), Support Vector Machine
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(SVM), Multi-Layer Perceptron (MLP; i.e., a feed-forward neural network), and

BERT fine-tuning (Devlin et al., 2019). As many of the action codes are quite distinct

from one another and likely to be discussed in very different contexts, we experimented

with lexical features as well as word embedding features for representing sample ac-

tivity reports. To control for activity report length, we used binary unigram features;

for word embeddings, we used either the averaged static embeddings of each word in

the report, or average BERT activation. BERT fine-tuning inherently uses the BERT

representation of the whole sequence.

Candidate selection methods

Classification methods, while powerful, lack two important factors for practical ap-

plication of concept normalization: flexibility to new concepts (as the label set is fixed)

and degrees of relatedness between labels (no representation of labels means that they

are orthogonal to one another). A candidate selection method like PROSE, however,

takes as input representations of a set of candidate senses, and simply chooses which

of these candidates is most representative of the sample. Thus, it can be extended to

new labels (by adding their representations to the candidate set), and direct repre-

sentation of labels allows for inter-label information.

PROSE is a system with multiple components. To distinguish between effects of

label representation alone and effects specific to the PROSE architecture, we per-

formed three sets of experiments: the first using cosine similarity alone to compare

an activity report representation to representations of the candidate ICF codes, the

second using the composite vector similarity model of Sabbir et al. (2017) (as used in

PROSE), and the third being a full PROSE system.
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Our concept representations were derived from the descriptions given for each

code in the ICF (World Health Organization, 2001). These descriptions were passed

as input to clinicalBERT (Alsentzer et al., 2019), and the token-level representations

averaged over the full descriptions to generate ICF code embeddings. This approach

meant that we were not able to create a representation for the Other label; our candi-

date selection models could therefore only predict one of the 12 ICF codes. We leave

addressing this issue for future work. Representations of the activity reports were

also generated by passing them to clinicalBERT and averaging the token representa-

tions for the portion of the report referring to the activity (included in the dataset

annotations).

Experiments

We used ten-fold cross validation for all experiments (stratified by label), as the

dataset did not have a pre-generated train/test split. The same splits were used

for all experiments, to control for random factors in split re-generation. For feature

and model selection experiments within the classification and candidate selection

frameworks, we used a held-out 10% of each fold’s training data for development,

and reported results combined across these sets. For final experiments with the best

classifier and candidate selection models, we used the full training data for each fold,

and reported results combined across the test sets.

7.3.2 Results

SVMs with static embeddings are the best classifier

Table 7.9 shows the results of our feature and model selection experiments within

the classifier framework. Static word embedding features yield the best results within
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Features k-NN SVM MLP BERT

Unigrams 72.0 77.1 76.5 –
Static embeddings 89.0 93.4 93.0 –

Combination 71.1 82.8 82.8 –
BERT 84.4 91.1 91.2 77.5

Table 7.9: Mobility activity normalization results across classifier methods and fea-
tures, using dev set accuracy from 10-fold cross validation.

each of k-NN, SVM, and MLP models. While unigram features provide a strong

baseline in each case, the decrease in performance when adding them to word embed-

ding features indicates that the predictive features in each set are negatively cross-

correlated, suggesting that lexical signals are counterproductive for this task. Surpris-

ingly, static embedding features outperform BERT features in all models, and BERT

fine-tuning significantly underperforms the other classification models using BERT

features. The best overall performance of 93.4% development accuracy is achieved

with an SVM model using static word embedding features.

Transforming concept representations with PROSE is essential

Figure 7.9 presents the results of using different candidate selection models for

activity normalization. Using supervised learning to learn a context-sensitive projec-

tion model for code representations with PROSE is essential for this task, yielding

over 60% improvement in accuracy over cosine similarity alone. The composite vec-

tor similarity method of Sabbir et al. (2017) yields the same results as unmodified

cosine similarity, indicating that the difference with PROSE comes from the learned

projection.
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Figure 7.9: Mobility activity normalization results across candidate selection models,
using development sets in cross-validation experiments.

Model
With Other Without Other

Accuracy Macro F-1 Accuracy Macro F-1

Best classifier 93.4 85.8 94.5 87.0
Best candidate selector 89.5 71.1 92.8 77.0

Table 7.10: Mobility action normalization results with classification and candidate
selection frameworks. Accuracy and macro F-1 are provided for each setting, both
including the Other label (which the candidate selection framework cannot choose)
and excluding it.

Both classification and candidate selection approaches are strong on this
dataset

As shown in Table 7.10, both classification and candidate selection frameworks

yield high accuracy and macro F-1 on our dataset. However, the classification ap-

proach is notably higher on both measures, even when controlling for the fact that

the candidate selection approach cannot predict the Other label. Figure 7.10 presents

the F-1 score achieved by each model on each label in the dataset; the SVM classifier
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Figure 7.10: Per-label F-1 for classification and candidate selection approaches to
mobility activity normalization.

outperforms PROSE in eleven of thirteen labels, though by a relatively small mar-

gin. This indicates that while our PROSE model shows clear potential for the action

normalization task, and offers advantages of an expandable label set and inter-label

relatedness, further experimentation is needed to see if these theoretical advantages

play out in a practical setting.

7.4 Conclusions

We have demonstrated that learned representations of domain concepts are a

powerful tool for disambiguation and concept normalization, yielding strong perfor-

mance in open-domain word sense disambiguation benchmarks and providing context-

sensitive normalization for ambiguous clinical strings. Our model’s ability to combine

representations learned from diverse data sources provides a significant advantage over

using single representations alone, and suggests that a diversity of specialized repre-

sentations has potential to improve normalization in many settings. We also show
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that concept representations are most effectively used in combination with other nor-

malization methods, in order to target distinct challenges of recognizing standard

forms, identifying novel forms, and resolving ambiguity in concept normalization.

Our results on identifying mobility activity types indicate clear potential for applying

concept representations to the challenging FSI research space, and identify specific di-

rections for further research in generalization to a broader set of activity types. In the

next chapter, we present a related application of concept representations: leveraging

the linguistic patterns they capture to study concept usage in different domains.
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Chapter 8: Analyzing clinical concept usage patterns with

sublanguage embeddings

Specialized domains, by their nature, exhibit patterns of language use that are

highly distinctive from other focused domains and from broad-coverage samples of

language. Capturing and adapting to these endemic patterns, which may reflect

metatextual structure such as templates as well as idiomatic usage and genuine se-

mantic differences, is key to successful applications of NLP within restricted domains.

Identifying these patterns is one of the primary goals of sublanguage analysis, and has

played a pivotal role in the development of NLP for health data, from highlighting

the clear linguistic differences between biomedical literature and clinical text (Fried-

man et al., 2002) to supporting adaptation to multiple languages (Laippala et al.,

2009). Recent studies of clinical sublanguage have taken a finer-grained approach

and extended sublanguage study to the level of individual document types within an

EHR, in order to improve our understanding of the syntactic and lexical differences

between highly distinct documents in modern EHR systems (Feldman et al., 2016;

Grön et al., 2019).55

55Portions of this chapter have previously been published in D Newman-Griffis and E Fosler-
Lussier. 2019. “Writing habits and telltale neighbors: analyzing clinical concept usage patterns with
sublanguage embeddings.” Proceedings of the Tenth International Workshop on Health Text Mining
and Information Analysis (LOUHI 2019), 146-156.
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In order to understand how semantic differences are manifested between special-

ized domains, whether they be different types of clinical documents or different genres

entirely, it is important to be able to examine differences in usage of concepts of inter-

est. Concepts are the meat and potatoes of domain semantics, representing the spe-

cialized knowledge developed among a group of speakers. As discussed in Chapter 5,

concept usage is not straightforward to analyze, as any given concept may have multi-

ple, often non-compositional surface forms that can refer to it (e.g., “ALS” and “Lou

Gehrig’s disease”), making them difficult to analyze using lexical occurence alone.

Understanding how concept usage differs between document types and domains can

not only augment recent methods for sublanguage-based text categorization (Feld-

man et al., 2016), but also inform the perennial challenge of concept normalization

(Luo et al., 2019): for example, “depression” is much easier to disambiguate if its

occurrence is known to be in a social work note or an abdominal exam.

Inspired by recent technological advances in modeling diachronic language change

(Hamilton et al., 2016b; Vashisth et al., 2019), as well as the utility of concept rep-

resentations for text normalization (described in Chapter 7), we characterize concept

usage differences within clinical sublanguages using nearest neighborhood structures

of clinical concept embeddings. We show that overlap in nearest neighborhoods can

reliably distinguish between document types while controlling for noise in the embed-

ding process. Qualitative analysis of these nearest neighborhoods demonstrates that

these distinctions are semantically relevant, highlighting sublanguage-sensitive rela-

tionships between specific concepts and between concepts and related surface forms.

Our findings suggest that the structure of concept embedding spaces not only captures
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domain-specific semantic relationships, but can also identify a “fingerprint” of concept

usage patterns within a clinical document type to inform language understanding.

8.1 Related Work

Sublanguage analysis historically focused on describing the characteristic gram-

matical structures of a particular domain (Friedman, 1986; Grishman, 2001; Friedman

et al., 2002). As methods for automated analysis of large-scale data sets have im-

proved, more studies have investigated lexical and semantic characteristics, such as

usage patterns of different verbs and semantic categories (Denecke, 2014), as well as

more structural information such as document section patterns and syntactic features

(Zeng et al., 2011; Temnikova et al., 2014). Using terminologies to assess concep-

tual features of a sublanguage corpus was proposed by Walker and Amsler (1986),

and Drouin (2004); Grön et al. (2019) used sublanguage features to expand existing

terminologies, but large-scale characterization of concept usage in sublanguage has

remained a challenging question.

Word embedding techniques have been utilized to describe diachronic language

change in a number of recent studies, from evaluating broad changes over decades

(Hamilton et al., 2016b; Vashisth et al., 2019) to detecting fine-grained shifts in

conceptualizations of psychological concepts (Vylomova et al., 2019). Embedding

techniques have also been used as a mirror to analyze social biases in language data

(Garg et al., 2018). Similar to our work, Ye and Fabbri (2018) investigate document

type-specific embeddings from clinical data as a tool for medical language analysis.

However, our approach has two significant differences: Ye and Fabbri (2018) used

word embeddings only, while we utilize concept embeddings to capture concepts across
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multiple surface forms; more importantly, their work investigated multiple document

types as a way to control for specific usage patterns within sublanguages in order to

capture more general term similarity patterns, while our study aims to capture these

sublanguage-specific usage patterns in order to analyze the representative differences

in language use between different expert communities.

8.2 Data and preprocessing

We use free text notes from the MIMIC-III critical care database (Johnson et al.,

2016) for our analysis. This includes approximately 2 million text records from hospi-

tal admissions of almost 50 thousand patients to the critical care units of Beth Israel

Deaconess Medical Center over a 12-year period. Each document belongs to one of

15 document types, listed in Table 8.1.

As sentence segmentation of clinical text is often optimized for specific document

types (Griffis et al., 2016), we segmented our documents at linebreaks and tokenized

using SpaCy (version 2.1.6; Honnibal and Montani 2017). All tokens were lower-

cased, but punctuation and deidentifier strings were retained, and no stopwords were

removed.
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8.3 Experiments

Methods for learning clinical concept representations have proliferated in recent

years (Choi et al., 2016b; Mencia et al., 2016; Phan et al., 2019), but often require

annotations in forms such as billing codes or disambiguated concept mentions. These

annotations may be supplied by human experts such as medical coders, or by adapting

medical NLP tools such as MetaMap (Aronson and Lang, 2010) or cTAKES (Savova

et al., 2010) to perform concept recognition (De Vine et al., 2014).

For investigating potentially divergent usage patterns of clinical concepts, these

strategies face serious limitations: the full diversity of MIMIC data has not been

annotated for concept identifiers, and the statistical biases of trained NLP tools may

suppress underlying differences in automatically-recognized concepts. We therefore

take a distant supervision approach, using JET (Newman-Griffis et al., 2018). JET

uses a sliding context window to jointly train embedding models for words, surface

forms, and concepts, using a log-bilinear objective with negative sampling and shared

embeddings for context words. It leverages known surface forms from a terminology

as a source of distant supervision: each occurrence of any string in the terminology

is treated as a weighted training instance for each of the concepts that string can

represent. As terminologies are typically many-to-many maps between surface forms

and concepts, this generally leads to a unique set of contexts being used to train the

embedding of each concept, though any individual context window may be used as a

sample for training multiple concepts. We constrain the scope of our analysis to only

concepts and strings from SNOMED-CT and LOINC,56 two popular high-coverage

clinical vocabularies.

56We used the versions distributed in the 2017AB release of the UMLS (Bodenreider, 2004).
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8.3.1 Identifying concepts for comparison

For each document type, we concatenate all of its documents (maintaining line-

breaks), identify all occurrences of SNOMED-CT and LOINC strings in each line,

and use these occurrences to train word, term, and concept embeddings with JET.

Due to the size of our subcorpora, we used a window size of 5, minimum frequency

of 5, embedding dimensionality of 100, initial learning rate of 0.05, and 10 iterations

over each corpus.

Prior research has noted instability of nearest neighborhoods in multiple embed-

ding methods (Wendlandt et al., 2018). We therefore train 10 sets of embeddings

from each of our subcorpora, each using the same hyperparameter settings but a

different random seed. We then use all 10 replicates from each subcorpus in our

analyses, in order to control for variation in nearest neighborhoods introduced by

random initialization and negative sampling. To evaluate the baseline reliability of

concept embedding neighborhoods from each subcorpus, we calculated per-concept

consistency by measuring, over all pairs of embedding sets within the 10 replicates,

the average set membership overlap between the top 5 nearest neighbors by cosine

similarity for each concept embedding.57 As shown in Figure 8.1a, these consistency

scores vary widely both within and between document types, with some document

types producing no concept embeddings with consistency over 40%. Interestingly, as

illustrated in Figure 8.1b, there is no linear relationship between log corpus size and

57We chose five nearest neighbors for our analyses based on qualitative review of neighborhoods
for concepts within different document types. We found nearest neighborhoods for concept embed-
dings to vary more than for word embeddings, often introducing noise beyond the top five nearest
neighbors; we therefore set a conservative baseline for reliability by focusing on the closest and most
stable neighbors. However, using 10 neighbors, as Wendlandt et al. (2018) did, or more could yield
different qualitative patterns in document type comparisons and bears exploration.
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(a) Self consistency by document type; line at 50%
threshold

(b) Self consistency compared to
corpus size (log scale), with doc-
ument types sorted by decreas-
ing corpus size.

Figure 8.1: Self-consistency rates in concept embeddings across MIMIC document
types; self-consistency measures overlap in nearest neighbors between replicate em-
beddings of the same concept.

mean concept consistency (R2 ≈ 0.011), suggesting that low consistency is not solely

due to limited training data.

To mitigate concerns about the reliability of embeddings for comparison, a set of

high-confidence concepts is identified for each document type by retaining only

those with a self-consistency of at least 50%; Table 8.1 includes the number of high-

confidence concepts identified and the mean consistency among this subset.58 These

embeddings capture reliable concept usage information for each document type, and

form the basis of our comparative analysis.

58We found in our analysis that most concept consistency numbers clustered roughly bimodally,
between 0-30% or 60-90%; this is reflected at a coarse level in the overall distributions in Figure 8.1a.
Varying the threshold outside of these ranges did not have a significant impact on the number of
concepts retained; the 50% threshold was chosen for simplicity. With larger corpora, yielding higher
concept coverage, a higher threshold could be chosen for a stricter analysis.
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8.3.2 Cross-corpus analysis

Our key question is what concept embeddings reveal about clinical concept us-

age between document types. To maintain a sufficient sample size, we restrict our

comparison to the 7 document types with at least 50 high confidence concepts: Case

Management, Discharge Summary, Echo, Nursing/Other, Nutrition, Physician, and

Radiology. Physician, ECG, and Nursing were also used by Feldman et al. (2016) for

their lexicosyntactic analysis, although they combined Nursing documents (longer

narratives) and Nursing/Other (which tend to be much shorter) into a single set,

while we retain the distinction. Interestingly, the fourth type they analyzed, ECG,

produced only 14 high-confidence concepts in our analysis, suggesting high semantic

variability despite the large number of documents.

As learned concept sets differ between document types, the first step for comparing

a document type pair is to identify the set of concepts embedded for both. For

reference type A and comparison type B, we identify high-confidence concepts from

A that are also present in B, and calculate four distributions using this shared set:

Reference consistency: self-consistency across each of the shared concepts,

using only other shared concepts to identify nearest neighborhoods in embeddings for

the reference set.

Comparison consistency: self-consistency of each shared concept in embed-

dings for the comparison document type, again using only shared concepts for neigh-

bors. As the shared set is based on high-confidence concepts from the reference set,

this is not symmetric with reference consistency (as the high-confidence sets may

differ).
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Cross-type consistency: average consistency for each shared concept calculated

over all pairs of replicates (i.e., comparing the nearest neighbors of all 10 reference

embedding sets to the nearest neighbors in all 10 comparison embedding sets).

Consistency deltas: the difference, for each shared concept, between its refer-

ence self-consistency and its cross-type consistency. This provides a direct evaluation

of how distinct the concept usage is between two document types, where a high delta

indicates highly distinct usage.

Mean values for these distributions are provided for each pair of our 7 document

types in Figure 8.2. Comparing Figures 8.2b and 8.2c, it is clear that high-confidence

concepts for one document type are typically not high-confidence for another. Most

document type pairs show fairly strong divergence, with deltas ranging from 30-60%.

Physician notes have comparatively high cross-set consistency of around 20% for

their high-confidence concepts, likely reflecting the all-purpose nature of these doc-

uments, which include patient history, medications, vitals, and detailed examination

notes. Interestingly, Case Management and Nutrition are starkly divergent from

other document types, with near-zero cross-set consistency and comparatively high

self-consistency of over 70% in the compared concept sets, despite a relatively high

overlap between their high-confidence sets and concepts learned for other document

types.

In order to control for the low overlap between high-confidence sets in different

document types, we also re-ran our consistency analysis restricted to only concepts

that are high-confidence in both the reference and comparison sets. As shown in Fig-

ure 8.3, this yields considerably smaller concept sets for comparison, with single-digit

overlap for 18/42 non-self pairings. Cross-set consistency increases somewhat, most
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significantly for pairings involving Physician or Radiology ; however, no consistency

delta falls below 20% for any non-self pair, indicating that concept neighborhoods

remain distinct even within high-confidence sets.

8.3.3 Qualitative neighborhood analysis

Analysis of neighborhood consistency enables measuring divergence in the con-

textual usage patterns of clinical concepts; however, this divergence could be due

to spurious or semantically uninformative correlations instead of clinically-relevant

distinctions in concept similarities. To confirm that our methodology captures infor-

mative distinctions in concept usage, we qualitatively review example neighborhoods.

To mitigate variability of nearest neighborhoods in embedding spaces, we identify a

concept’s qualitative nearest neighbors for a given document type by calculating its

pairwise cosine distance vectors for all 10 replicates in that document type and taking

the k neighbors with lowest average distance.

As with our consistency analyses, we focus on the neighborhoods of high-confidence

concepts, although we do not filter the neighborhoods themselves. Of all high-

confidence concepts identified in our embeddings, only two were high-confidence in 5

different document types, and these were highly generic concepts: C0184661 Interven-

tional procedure and a corresponding LOINC code (C0945766). Seven concepts were

high-confidence for 4 document types; of these, two were generic procedure concepts,

two were concepts for the broad gastrointestinal category, and three were versions of

body weight. For a diversity of concepts, we therefore turned to the 75 concepts that

were high-confidence within 3 document types. We reviewed each of these concepts,

and describe our findings for three of the most broadly clinically-relevant below.
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C0011849 Diabetes Mellitus Diabetes Mellitus (search strings: “diabetes mel-

litus” and “diabetes mellitus dm”) was high-confidence in Discharge Summary, Nurs-

ing/Other, and Radiology document types; Table 8.2 gives the top 5 neighbors from

each type. These neighbors are semantically consistent across document types: more

specific diabetes-related concepts, related biological factors; continuing down the

nearest neighbors list yields related symptoms and comorbidities such as C0022104

Irritable Bowel Syndrome and C0017168 Gastroesophageal reflux disease.

C0751295 Memory loss Memory loss (search string: “memory loss”) was also

high-confidence in Discharge Summary, Nursing/Other, and Radiology documents.

For brevity, its nearest neighbors are omitted from Table 8.2, as there is little vari-

ation among the top 5. However, the next neighbors (at only slightly greater cosine

distance) vary considerably across document types, while remaining highly consis-

tent within each individual type. In Discharge Summary, more high-level concepts

related to overall function emerge, such as C0598463 Functional status, C0439849 Re-

lationships, and C4068735 Rambling. Radiology yields more symptomatically-related

neighbors: C0221470 Aphagia is present in both, but Radiology includes C0233407

Disorientation, C0011253 Delusions, and C0231686 Gait, Unsteady. Finally, Nurs-

ing/Other finds concepts more related to daily life, such as C0678446 Cigars and

C3843228 Multifocals, though at a greater cosine distance than the other document

types (Figure 8.4).

C0278060 Mental state Mental state (search strings: “mental status”, “men-

tal state”) was high-confidence in Discharge Summary, Echo, and Radiology, and

highlighted an unexpected consequence of relying on the Distributional Hypothesis

(Harris, 1954) for semantic characterization in sublanguage-specific corpora.

263



Q
u

er
y

D
is

ch
a
rg

e
S

u
m

m
a
ry

N
u

rs
in

g
/
O

th
er

R
a
d

io
lo

g
y

D
ia

b
et

es
M

el
li

tu
s

(C
00

11
84

9)

C
0
0
1
1
8
4
7

D
ia

be
te

s
C

0
0
8
5
2
0
7

G
es

ta
ti

o
n

a
l

D
ia

be
te

s
C

3
8
5
3
1
3
4

P
oo

rl
y

co
n

tr
o
ll

ed

C
0
4
4
1
7
3
0

T
yp

e
2

C
1
4
4
3
0
3
6

A
2

im
m

u
n

o
lo

gi
c

sy
m

bo
l

C
0
0
21

6
4
1

In
su

li
n

C
0
4
4
1
7
2
9

T
yp

e
1

C
0
0
1
1
8
5
4

D
ia

be
te

s
M

el
li

tu
s,

In
su

li
n

-D
ep

en
d
en

t
C

0
0
1
1
8
5
4

D
ia

be
te

s
M

el
li

tu
s,

In
su

li
n

-D
ep

en
d
en

t

C
0
0
8
5
2
0
7

G
es

ta
ti

o
n

a
l

D
ia

be
te

s
C

0
0
1
5
4
9
8

F
a
ct

o
r

V
C

0
0
1
1
8
6
0

D
ia

be
te

s
M

el
li

tu
s,

N
o
n

-I
n

su
li

n
-D

ep
en

d
en

t

C
00

11
8
5
4

D
ia

be
te

s
M

el
li

tu
s,

In
su

li
n

-D
ep

en
d
en

t
C

1
4
4
3
0
3
5

A
1

im
m

u
n

o
lo

gi
c

sy
m

bo
l

C
0
4
4
1
77

7
S

ta
ge

le
ve

l
5

D
is

ch
a
rg

e
S

u
m

m
a
ry

E
ch

o
R

a
d

io
lo

g
y

M
en

ta
l

st
at

e
(C

02
78

06
0)
†

C
4
0
6
8
8
0
4

C
o
h
er

en
t

C
3
2
6
3
7
1
0

D
o
n

o
r:

T
yp

e:
P

o
in

t
in

ti
m

e:
ˆ
P

a
ti

en
t:

N
o
m

in
a
l

C
0
8
5
6
0
5
4

M
en

ta
l

st
a
tu

s
ch

a
n

ge
s

C
0
0
0
9
6
7
6

C
o
n

fu
si

o
n

C
0
0
1
3
0
1
8

D
o
n

o
r

pe
rs

o
n

C
0
2
7
8
0
6
1

A
bn

o
rm

a
l

m
en

ta
l

st
a
te

C
2
5
9
8
1
6
8

R
es

p
ir

a
to

ry
st

a
tu

s:
-:

P
o
in

t
in

ti
m

e:
ˆ
P

a
ti

en
t:

-
C

0
1
6
2
2
9
7

R
es

p
ir

a
to

ry
a
rr

es
t

C
0
2
34

4
2
5

L
ev

el
o
f

co
n

sc
io

u
sn

es
s

C
19

98
8
2
7

R
es

p
ir

a
to

ry
st

a
tu

s
C

1
7
1
6
0
0
4

O
rg

a
n

d
o
n

o
r:

T
yp

e:
P

o
in

t
in

ti
m

e:
ˆ
D

o
n

o
r:

N
o
m

in
a
l

C
4
0
5
0
4
7
9

L
ev

el
o
f

co
n

sc
io

u
s-

n
es

s:
F

in
d
:P

t:
ˆ
P

a
ti

en
t:

O
rd

C
02

78
0
6
1

A
bn

o
rm

a
l

m
en

ta
l

st
a
te

C
4
2
8
1
7
8
3

S
w

a
ll

o
w

in
g

G
-c

od
e

C
0
0
2
6
2
2
1

M
is

si
ss

ip
p
i

(s
ta

te
)

T
ab

le
8.

2:
E

x
am

p
le

s
of

co
n
ce

p
t-

le
ve

l
n
ea

re
st

n
ei

gh
b

or
s

ac
ro

ss
d
o
cu

m
en

t
ty

p
es

.
S
h
ow

n
ar

e
5

n
ea

re
st

n
ei

gh
b

or
co

n
ce

p
ts

to
D

ia
be

te
s

M
el

li
tu

s
an

d
M

en
ta

l
st

at
e

fr
om

3
h
ig

h
-c

on
fi
d
en

ce
d
o
cu

m
en

t
ty

p
es

,
av

er
ag

in
g

co
si

n
e

si
m

il
ar

it
ie

s
ac

ro
ss

al
l
re

p
li
ca

te
em

b
ed

d
in

g
se

ts
w

it
h
in

ea
ch

d
o
cu

m
en

t
ty

p
e.
†T

h
e

tw
o

n
ea

re
st

n
ei

gh
b

or
s

to
M

en
ta

l
st

at
e

fo
r

al
l

th
re

e
d
o
cu

m
en

t
ty

p
es

w
er

e
tw

o
L

O
IN

C
co

d
es

u
si

n
g

th
e

sa
m

e
“m

en
ta

l
st

at
u
s”

st
ri

n
g;

th
ey

ar
e

om
it

te
d

h
er

e
fo

r
b
re

v
it

y.

264



The top 5 nearest neighbors (excluding two trivial LOINC codes for the same con-

cept, also using the “mental status” search string) are given in Table 8.2. In Discharge

Summary documents, “mental status” is typically referred to in detailed patient nar-

ratives, medication lists, and the like, and this yields semantically-reasonable nearest

neighbors such as C0009676 Confusion and C4068804 Coherent.

In Echo documents, however, “mental status” occurs most frequently within an

“Indication” field of the “PATIENT/TEST INFORMATION” section. Two com-

mon patterns emerge in “Indication” texts: references to altered or reduced mental

status, or patients who are vegetative and being evaluated for organ donor eligibil-

ity. Though “mental status” and “organ donor” do not co-occur, their consistent

occurrence in the same contextual structures leads to extremely similar embeddings

(see Figure 8.4). A similar issue occurs in Radiology notes, where the “MEDICAL

CONDITION” section includes several instances of elderly patients presenting with

either hypothermia or altered mental status; as a result, two hypothermia concepts

(C1963170 and C0020672) are in the 10 nearest neighbors to Mental state.

Results from Radiology also highlight one limitation of distant supervision for

learning concept embeddings: as the word “state” is polysemous, including a geopo-

litical entity, geographical concepts such as C0026221 Mississippi end up with similar

embeddings to Mental state. A similar issue occurs in the neighbors for Memory loss ;

due to string polysemy, the concept C4255278 CIGAR string - sequence alignment

ends up with a similar embedding to C0678446 Cigars.
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Figure 8.4: Cosine distance distribution of three concept representations to their 10
nearest neighbors, averaged across document type replicate embeddings.

8.3.4 Nearest surface form embeddings

As JET learns embeddings of concepts and their surface forms jointly in a single

vector space, we also analyzed the surface forms embeddings nearest to different

concepts. This enabled us both to evaluate the semantic congruence of surface form

and concept embeddings, and to further delve into corpus-specific contextual patterns

that emerge in the vector space. As with our concept neighborhood analysis, for

each of our 10 replicate embeddings in each document type, we calculated the cosine
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distance vector from each high-confidence concept to all of the term embeddings in

the same replicate, and then averaged these distance vectors to identify neighbors

robust to embedding noise. Table 8.3 presents surface form neighbors identified for

three high-confidence clinical concepts chosen for clinical relevance and wide usage;

these concepts are discussed in the following paragraphs.

Blood pressure (C0005823) Blood pressure is high-confidence in Discharge

Summary, Echo, and Radiology documents. It is a key concept that is measured

frequently in various settings; intuitively, it is a sufficiently core concept that it should

exhibit little variance. Its neighbor surface forms indeed indicate fairly consistent

use across the three document types, referencing both related measurements (“heart

rate”) and related concepts (“exercise” and “stress”).

C0013798 Echocardiogram Echocardiogram is high-confidence in Discharge

Summary, Echo (detailed summaries and interpretation written after the ECG), and

ECG (technical notes taken during the procedure) documents. ECGs are common,

and are performed for various purposes and discussed in varying detail. Interestingly,

neighbor surface forms in Discharge Summary embeddings reflect specific pathologies,

potentially capturing details determined post diagnosis and treatment. In Echo
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embeddings, the neighbors are more general surface forms evaluating the findings

(“fair”) and relevant history/symptoms that led to the ECG (“exercise”, “stress”).

ECG embeddings reflect their more technical nature, with surface forms such as “no

change” and “abnormal” yielding high similarity.

C0009462 Community Community is a very broad concept and a common

word, and is discussed primarily in documents concerned with whole-person health;

it is high confidence in Discharge Summary, Nutrition, and Case Management docu-

ments. Each of these document types reflects different usage patterns. The nearest

surface forms in Discharge Summary embeddings reflect a focus on living conditions,

referring to “health center”, “residence”, and “nursing facility”. In Nutrition doc-

uments, Community is discussed primarily in terms of “community-acquired pneu-

monia”, likely leading to more treatment-oriented neighbor surface forms. Finally,

in Case Management embeddings, nearby surface forms reflect discussion of specific

risk factors or resources (“substance”, “monitoring”) to consider in maintaining the

patient’s health and responding to their specific needs (e.g., “hearing”, “speech”).

Thus, Community reflects two distinct kinds of concept usage patterns within docu-

ment type sublanguages: templating, by its association with other treatment-related

terms in Nutrition documents; and focus on specific aspects of the concept, by its

associations with living conditions in Discharge Summary notes and with risk factors

in Case Management notes. These two factors are entangled in our results: learn-

ing to disentangle such different aspects of sublanguage patterns from cooccurrence

information represents an intriguing direction for future research.
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8.4 Discussion

Our results show that learning concept embeddings from focused clinical corpora

captures distinctive characteristics of those corpora. These characteristics include

both semantic differences, in terms of salient associations and conceptualizations of

a given concept, and structural differences, such as template-based usage. These

findings suggest that sublanguage-specific embeddings can help profile distinctive

usage patterns for text categorization, offering greater specificity than latent topic

distributions while not relying on potentially brittle lexical features. In addition,

usage profiles within specific settings could also assist with concept normalization by

providing more-informed prior probability distributions for medical vocabulary senses

that are conditioned on the document or section type that they occur in.

8.4.1 Detecting deviation from baseline usage

Our experiments in this study were formulated in terms of obtaining represen-

tative snapshots of language use from different document types independently, and

identifying differences that emerged. An alternative formulation, which might also

mitigate our observed sensitivity to embedding noise somewhat, would be to cap-

ture deviation from a shared reference instead: i.e., to train representations on a

broad-coverage baseline language sample that can be expected to inform all of the

subdomains of interest, and then tune these representations on subdomain-specific

corpora in order to focus in on the characteristics of each particular domain. This

would then enable a more straightforward way of detecting which concepts are dis-

tinctive for a given domain, by comparing their nearest neighbor associations with

the nearest neighborhoods from the reference representations; those which exhibit
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consistent differences in nearest neighbors are likely to be concepts with specialized

usage in the domain of interest. The shared reference would further strengthen com-

parative analysis between two specialized domains, by controlling for some degree of

embedding noise and providing a shared base of more general-purpose language use

to inform the specialized models. We highlight this as a key direction for future work.

8.4.2 Disentangling corpus features from sublanguage fea-
tures

As we observed with C0278060 Mental state, relying on similarity in contextual

patterns can lead to capturing more corpus-specific features with embeddings, as op-

posed to (sub)language-specific features, as target corpora become smaller and more

homogeneous. The same issue emerged in analysis of C0009462 Community, in which

some samples captured template-based information while others captured semantic

associations. If a particular concept or set of concepts are always used within the

same section of a document, or in the same set phrasing, the “similarity” captured

by organization of an embedding space will be more informed by this writing habit

endemic to the specific corpus than by clinically-informed semantic patterns that

can generalize to other corpora.59 While representation learning based on contextual

information must inherently conflate these two factors, one possible direction for mit-

igating this entanglement is to leverage the complementarity highlighted in Chapter 7

and learn concept representations from multiple knowledge sources jointly. Nonethe-

less, drawing a distinction between idiosyncrasies of a particular corpus and repre-

sentative characteristics of an underlying sublanguage is a central concern to analysis

59For further discussion, see Newman-Griffis and Fosler-Lussier (2019b).
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of specialized language samples, and one which is beyond the scope of concept-level

semantics alone.

8.4.3 Limitations

A few limitations of our study are important to note. The embedding method

we chose offers flexibility to work with arbitrary corpora and vocabularies, but its

use of distant supervision introduces some undesirable noise. The example given in

Section 8.3.3 of the similar embeddings learned for the concept cigars and the con-

cept of the CIGAR string in genomic sequence editing illustrates the downside of not

leveraging disambiguation techniques to filter out noisy matches. On the other hand,

our restriction to strings from SNOMED-CT and LOINC provided a high-quality set

of strings intended for clinical use, but also removed many potentially helpful strings

from consideration. For example, the UMLS also includes the non-SNOMED/LOINC

strings “diabetes” and “diabete mellitus” [sic] for C0011849 Diabetes Mellitus, both

of which occur frequently in MIMIC data. Misspellings are also common in clini-

cal data; leveraging well-developed technologies for clinical spelling correction would

likely increase the coverage and confidence of sublanguage concept embeddings.

At the same time, the low volume of data analyzed in many document types

introduces its own challenges for the learning process. First, though JET can in prin-

ciple learn embeddings for every concept in a given terminology, this is predicated

on the relevant surface forms appearing with sufficient frequency. For a small docu-

ment sample, many such surface forms that would otherwise be present in a larger

sample will either be missing entirely or insufficiently frequent, leading to effectively

“missed” concepts. While we are not aware of another concept embedding method
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compatible with arbitrary unannotated corpora that could help avoid these issues,

some strategies could be used to reduce the potential impact of both training noise

and low sample sizes. One approach referenced above, which might also help improve

concept consistency in the document types that yielded few or no high-confidence

concepts, would be pretraining a shared base embedding on a large corpus such as

PubMed abstracts, which could then be tuned on each document type-specific sub-

corpus. While this could introduce its own noise in terms of the differences between

biomedical literature language and clinical language (Friedman et al., 2002), it could

help control for some degree of sampling error and provide a linguistically-motivated

initialization for the concept embedding models.

8.5 Conclusion

Analyzing nearest neighborhoods in embedding spaces has become a powerful tool

in studying diachronic language change. We have described how the same principles

can be applied to sublanguage analysis, and demonstrated that the structure of con-

cept embedding spaces captures distinctive and relevant semantic characteristics of

different clinical document types. This offers a valuable tool for sublanguage charac-

terization, and a promising avenue for developing document type “fingerprints” for

text categorization and knowledge-based concept normalization.
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Chapter 9: Final Remarks

Understanding the characteristics of language within new domains, and linguistic

factors for new applications, has been a key contributor to the growth of the natural

language processing field. Neural representation learning techniques have provided

a powerful tool for capturing patterns in natural language, enabling mathematical

representation of words, phrases, and other linguistic units in dense, low-dimensional

feature spaces for modeling language phenomena.

Representation learning methods draw on the distributional hypothesis (Harris,

1954), which states that words used in similar contexts have similar meaning, to

produce representation spaces where vector similarity correlates with similarity in

usage patterns. Representation models are learned based only on the relationships

between represented items, rather than explicit features, making them highly opaque

and difficult to analyze and interpret. Nonetheless, the relationships they capture

provide a mirror for analyzing language use, and learning more about specialized

language and how to process it in specific domains.

In the first part of this thesis, we described Functional Status Information (FSI),

a type of health-related information capturing an individual’s lived experience in a

particular health state, with utility for both care delivery and government benefits ad-

ministration. We further described characteristics of clinical text that pose significant
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challenges for NLP. In the second part, we briefly reviewed the field of representation

learning, and discussed how learned representations can be used to study questions

about language use. We then presented a new technique for learning representations

of domain-specific concepts, and demonstrated its utility for both biomedical and

general-purpose applications. Finally, in the third part, we described several applica-

tions of representation learning techniques to challenging tasks in processing clinical

language and FSI in particular, including automatic extraction of complex FSI re-

ports, semantic grounding of ambiguous and/or domain-specific terms, and studying

patterns in how medical concepts are discussed among different clinical specialties.

9.1 Summary of contributions

Characterization of the functional status domain (Chapter 2) We described

how conceptual models of human function can be realized in natural language, and

identified specific challenges in resources, modeling techniques, and domain knowledge

required to effectively leverage informatics methods to analyze function. We further

demonstrated the rehabilitation medicine, a family of medical specialties focusing on

optimizing function, forms a distinct clinical sublanguage, and that functional status

information presents significant challenges of semantic and syntactic complexity.

Method for jointly embedding entities and text (Chapter 5) We developed

JET, a method for learning neural representations of domain concepts from arbitrary

text corpora, without the need for direct annotations of concept mentions or any

specialized domain knowledge beyond a flat terminology. We demonstrated that

concept representations learned through JET correlate with human judgments of

similarity and relatedness for both biomedical and encyclopedic concepts, and that
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these representations capture semantically-important information beyond what word-

level representations can model.

Applications of learned representations to capture FSI (Chapter 6) We

presented two different models for extracting functional status information using

learned representation features, and demonstrated that representations learned from

in-domain data contribute significantly to successful extraction. We showed that a

sequence-level LSTM-CRF model yields high precision extraction of mobility-focused

FSI activity reports, while a word-level relevance tagging model achieves high cover-

age of mobility-related information in real-world clinical documents from both NIH

and the U.S. Social Security Administration.

Model combining concept representations for semantic grounding of

text (Chapter 7) We proposed PROSE, a model for learning task-specific projec-

tions of representation spaces to combine concept representations learned from dif-

ferent knowledge sources. We evaluated our model on two semantic grounding tasks:

word sense disambiguation and medical concept normalization, using both clinical dis-

ease/treatment/test concepts and functional activity types. We demonstrated that

a learned, context-sensitive projection of concept representations improves semantic

grounding over vector space comparison alone, and we showed consistent improvement

from combining multiple sources and methods of learning concept representations.

Demonstration of sublanguage analysis with concept representations

(Chapter 8) Finally, we used JET to learn representations of clinical concepts from

clinical text corpora representing different medical specialties, and demonstrated
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that the nearest neighborhood structure of these representations captured clinically-

relevant distinctions in how medical concepts were discussed between different doc-

ument types, thus laying the groundwork for including concept-based representation

learning in the toolkit for medical sublanguage analysis.

9.2 Future directions

Functional status information presents an attractive test bed for further develop-

ing and applying representation-based sublanguage analysis techniques, particularly

as NLP for FSI expands from mobility information to other types of activity and

participation. The HARE model described in Chapter 6 presents an opportunity

to automatically identify FSI-related documents from other, unannotated corpora

(e.g., MIMIC-III), and the work described in Chapter 8 offers a tool for asking more

fine-grained questions about differences in how activity and participation concepts are

used across specialties or between different institutions. In addition, learned represen-

tations can significantly contribute to efforts to automatically develop comprehensive

terminologies for how FSI concepts are referred to in practice, enabling improved

application of traditional clinical NLP methods in this area.

In addition to representation-based methods for analysis, expert-driven linguistic

analysis of FSI will identify new strategies for model development and new research

questions in how to capture this information most effectively. For example, given our

observations of complex syntactic structure in activity reports, it is quite likely that

analysis of syntactic dependencies within these reports, as well as semantic roles, will

identify some generalizable patterns in how activity reports are constructed that can

be incorporated into the design of models for FSI extraction.
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In a more general modeling direction, the clear gains we demonstrate for semantic

grounding tasks by combining multiple representation methods open intriguing ques-

tions for use of representation features in other tasks. Different kinds of knowledge

that contribute to human language understanding within specific domains, such as

the relationships between concepts and knowledge of language use patterns within

local communities. This raises the question of whether a PROSE-style combina-

tion model, utilizing word or phrase representations learned from different knowledge

sources, could improve performance in information extraction and text classification

as well. Further, these results suggest that there are likely engineering gains to be

had from learning and combining multiple highly specialized methods for concept

representation, in contrast to an iterative improvement of a single best all-purpose

concept embedding strategy.

Finally, as we noted in Chapter 4, one of the significant challenges in analyzing

NLP models using representation features is the opacity of the representation space,

and the difficulty of mapping operations in representation space back to corresponding

intuitions about language. The arguments laid out in Appendix A present a possible

approach towards utilizing contextualized word and sentence representations to pro-

vide a more systematic mapping back from representation space to language, which

would be a powerful tool for model interpretation. Developing a practical method

to approximate mapping back from arbitrary representations to meaningful language

using contextualized models is an intriguing area for future investigation.
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9.3 Conclusions

In this thesis, we have investigated the use of representation learning techniques at

the word and concept levels to capture patterns of language use in specific domains.

We further identified functional status information as a new, high-impact domain for

natural language processing, and provided both descriptive analysis of the domain

and empirical evidence of capturing domain information with learned representations.

This work provides new techniques and clear directions for using learned representa-

tions to study questions about language, and provides a template for applying NLP

to new questions and new types of information in the clinical domain.
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Appendix A: Sequential representations: a homeomorphism

for language?

Returning to the discussion in Section 4.1, sequence-level representations, includ-

ing contextualized word representations, offer an intriguing possibility for embedding

(in the mathematical sense) natural language. As discussed in Section 4.4, the se-

mantic content of linguistic representation spaces are typically analyzed in topologi-

cal terms: i.e., which representations are close to one another, what groups do they

form, and what relationships exist between different groups of representations. As

Section 4.5 shows, these topological characteristics also provide the signals most in-

formative for backpropagation in machine learning, reflecting the continuous nature

of most neural network transformations. Thus, it is informative to view the embed-

ding function modeled in neural representations through a topological lens, i.e., as a

homeomorphism.

A.1 A homeomorphism provides interpretability of represen-
tation space

Representing language in real space for input features (and intermediate features)

in NLP applications presents the opportunity to treat these features as samples in
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a continuous Euclidean space. This raises three intriguing questions regarding the

relationship back from the feature space to the language space:

1. What does the space between two embeddings correspond to?

2. Does a task-specific decision function over representation space correlate with

linguistic intuitions?

3. Can we define operators over the embedding space that correspond to linguistic

intuitions?

For all of these questions, a homeomorphism between language and representations

is a critical tool, because it provides the connection between points in the real-valued

representation space and their pre-image in the domain (i.e., a word sequence).

A.1.1 Interpreting the space between embeddings

Prior work has observed semantically-correlated clustering of word and sentence

representations (Xu et al., 2015; Zhai et al., 2016), and Kim and de Marneffe (2013)

demonstrated that linear alignment of word representations corresponds to semantic

intensity scales, and that strengthening this alignment yields improved performance

on semantic tasks (Kim et al., 2016a). These results, which reflect the distribu-

tional hypothesis, suggest that continuous displacement in the representation space

is likely to correspond to similarity in language. However, analyses of continuous

displacement, such as the analogy completion task, utilize the Voronoi tesselation

of the representation space to choose the closest candidate from the fixed vocabu-

lary of words (Linzen, 2016). Continuous mapping back from representation space

to vocabulary is impossible with non-contextualized word representations (discussed
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below), necessitating this type of discontinuous decision. However, a homeomorphism

to word sequences would allow for direct analysis of continuous representation dis-

placement in terms of corresponding language, enabling analyses such as interpolation

along an identified semantic intensity hyperplane or the types of errors produced by

a continuous function to choose from a discrete vocabulary.

A.1.2 Interpreting decision functions in representation space

Sequence- or word-level classification models using representational features define

decision functions over representation space. However, unlike engineered features,

which have a mathematical value directly interpretable in light of the criteria for the

feature, the meaning of representational features comes only from their correlation

to linguistic inputs. Thus, interpretation of the boundary areas in learned decision

functions is limited to points whose representations are known a priori, which may

or may not be close to the boundary area. A homeomorphism would provide a direct

mapping from representation points arbitrarily close to a decision boundary back

to interpretable linguistic inputs, allowing for much more fine-grained analysis of

whether learned decision functions correspond to linguistic intuitions or not.

A.1.3 Linguistic operators in real space

Operator functions in an embedding scenario can be defined in two ways: over the

domain (yielding corresponding transformations in the image) or over the range (with

corresponding transformations in the pre-image). Implementing semantic and syntac-

tic composition of word sequences in representation space has been an area of active

research (Erk and Padó, 2008; Mitchell and Lapata, 2010; Baroni and Zamparelli,
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2010; Blacoe and Lapata, 2012; Fyshe et al., 2015), in which contextualized represen-

tation models are a recent entry. A homeomorphism would be a powerful new tool

for this problem, enabling both linguistic analysis of Euclidean operators–e.g., inves-

tigating what multiplying two representations means in language (if anything)–and a

direct analysis of the continuous outputs of custom composition functions.

A.2 Well-chosen sequential representations are homeomor-
phic to word sequences: proof sketch

A.2.1 Cardinality of domain and range

Defining a homeomorphism requires meeting stricter criteria than the general no-

tion of an embedding function. For f : X → Y to be a homeomorphism, both f

and its inverse must be continuous, and f must be bijective. With word-level static

and sub-word representations, however, bijectivity is impossible. Natural language

vocabularies are productive: neologisms emerge constantly, thus vocabularies cannot

be said to be finite. However, it is reasonable to assume that any natural language

vocabulary must be countably infinite (ℵ0); it is easy to imagine an infinite dictio-

nary mapping integers to word types, with complete coverage. The range of neural

representation functions, however, is the d-dimensional real domain Rd, which is un-

countably infinite (ℵ1). With a different cardinality between domain and range, f

inherently cannot be bijective.

Sequence representation methods, however, define the domain X differently. As

the representation of any sequence (or sequence element) is conditioned on the se-

quence of words around it, different word sequences will yield different representa-

tions; in a contextualized model, different representations will be provided for each

token. The recursive nature of natural language grammars, through features such
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as embedded clauses and conjunction, allow in principle for infinite-length sentences

(though these are of course impossible in practice). Infinite length becomes more

reasonable if we consider processing word sequences across sentence boundaries, as is

frequently done in contextualized embedding models (Devlin et al., 2019; Yang et al.,

2019). While some contextualized models, such as BERT, impose length limits on

input sequences for processing efficiency, these limits are not required (ELMo, for

example, processes arbitrary-length sequences). Thus, the space of potential inputs

for sequential models is in fact the power set of a natural language vocabulary–and

therefore uncountably infinite (ℵ1). With both a domain and range of cardinality ℵ1,

a bijective mapping becomes possible.

A.2.2 Continuity of the representation function

Continuity between two topological spaces requires that for every open set in the

range, its pre-image is an open set in the domain. If we define the domain X as

the set of all unique word sequences (of length 0 to inf), then it follows that the

basic open sets we want to represent in the embedding are simply each individual

word sequence x ∈ X, yielding the discrete topology (i.e., every combination of zero

or more word sequences is an open set). The topology of the range is therefore

immaterial, as any function f : X → T mapping from a discrete topology X is

inherently continuous (since all pre-images will necessarily be open sets) (Munkres,

2013). However, for practical purposes, let the topology of the range also be the

discrete topology, in d-dimensional real space, generalizing the criterion that if one

point is taken to correspond to a specific input sequence, all points in real space

should have corresponding input sequences.
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A.2.3 Meeting the bijectivity criterion

Bijectivity involves satisfying both injectivity (each item in the domain is mapped

to a unique item in the range) and surjectivity (each item in the range has a corre-

sponding pre-image in the domain).

Injectivity requires three constraints on the contextualized representation func-

tion. First, the sequence representation model must consist of a composition of injec-

tive functions; i.e., the activation functions in the neural network must be injective

(sigmoid and tanh activation satisfy this requirement; the commonly-used Rectified

Linear Unit (ReLU) does not). Second, the lexicalized representations used to repre-

sent each word (or wordpiece) as inputs to the sequence representation method must

be unique; i.e., no two words or wordpieces may share the same lexicalized represen-

tation. These first two constraints ensure uniqueness of outputs for any sequences of

the same length, i.e.

∀1 ≤ t ≤ inf;x, x′ ∈ X;x 6= x′ : f(x1 . . . xt) 6= f(x′1 . . . x
′
t) (A.1)

Finally, a non-zero amount of information must be carried over in the model between

timesteps; i.e.

∀2 ≤ t ≤ inf;x ∈ X : f(x1 . . . xt−1) 6= f(x1 . . . xt) (A.2)

If these constraints are satisfied, it follows that

∀x, x′ ∈ X;x 6= x′ : f(x) 6= f(x′) (A.3)

i.e., f is injective.

Surjectivity is somewhat simpler. As any open interval on the real line is homeo-

morphic to the entire real line (Munkres, 2013), it is sufficient to constrain the range
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of f to an open interval:

∃a, b ∈ Rd : ∀x ∈ X, 1 ≤ i ≤ d : a < f(x)i < b (A.4)

For any f satisfying this criterion, a new function f ′ : X → Y can be trivially defined

as f ′(x) = g(f(x)), where g : (a, b)d → Rd; i.e., f ′ is a surjective version of f . For

practical purposes, the sequence representation model is therefore required to have

an output activation function h whose range is an open set in the real line, such as

sigmoid (h : R→ (0, 1)) or tanh (h : R→ (−1, 1)).

Thus, if the sequence representation function f : X → Y is chosen such that

it satisfies Equations A.1, A.2, and A.4, then f is bijective. Since f is trivially

continuous, as discussed in Section A.2.2, then f is a homeomorphism between the

space of word sequences and the d-dimensional real space.

A.3 Homeomorphism holds when restricting to linguistically
valid sentences

With the constraints and assumptions outlined in the proof sketch above, se-

quence representation functions, including contextualized word representations, de-

fine a homeomorphism between word sequences and real values. Of course, not all

word sequences are valid in any given language: while “Buffalo buffalo Buffalo buffalo

buffalo buffalo Buffalo buffalo” is a valid English sentence, “Duck duck duck duck

duck” is not. However, the phenomenon of center embedding (e.g., recursive nesting

of relative clauses) can in principle provide infinite length sentences, with infinite

slots for each part of speech. Thus, if we retain our assumption of an infinite vo-

cabulary (given the ability to coin neologisms), it is theoretically possible to produce
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an uncountably infinite number of linguistically valid sentences within a human lan-

guage. As the cardinality of this set matches the cardinality of the set of all word

sequences, we can change our definition of the basic open sets in X to only be those

word sequences that are grammatical, and the proof remains the same.

Empirically, center embedding has not been observed beyond a depth of three

(Karlsson, 2007), and infinite coining of neologisms is impractical at the very least.

Thus, for the kinds of practical analyses described in Section A.1, it remains virtu-

ally guaranteed that any given point in real space will not correspond to a sentence

likely to be uttered in a natural setting. Nonetheless, the theoretical homeomorphism

presented by sequence representation methodologies offers an intriguing avenue for

further research into characterizing representation spaces.
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Appendix B: Software packages and datasets contributed by

this thesis

B.1 Software packages

JET: Jointly-embedded Entities and Text

• Implementation of concept-level representation learning method presented in

Chapter 5.

• Originating publication: D Newman-Griffis, A M Lai, and E Fosler-Lussier,

“Jointly Embedding Entities and Text with Distant Supervision”. In Proceed-

ings of the 3rd Workshop on Representation Learning for NLP, 2018.

• URL: https://github.com/OSU-slatelab/JET

NeuralVecmap

• Deep neural network method for learning mapping function from one set of

learned representations to another.
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• Originating publication: D Newman-Griffis and A Zirikly, “Embedding Transfer

for Low-Resource Medical Named Entity Recognition: A Case Study on Patient

Mobility”. In Proceedings of BioNLP 2018, 2018.

• URL: https://github.com/drgriffis/NeuralVecmap

HARE: Highlighting Annotator for Ranking and Exploration

• Word-level relevance tagging model and web-based framework for reviewing

output of information extraction models.

• Originating publication: D Newman-Griffis and E Fosler-Lussier, “HARE: a

Flexible Highlighting Annotator for Ranking and Exploration”. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing:

Systems Demonstrations. 2019.

• URL: https://github.com/OSU-slatelab/HARE

B.2 Datasets

WikiSRS: Wikipedia Similarity and Relatedness Set

• 688 pairs of Wikipedia entities, with human evaluations for similarity and re-

latedness.
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• Originating publication: D Newman-Griffis, A M Lai, and E Fosler-Lussier,

“Jointly Embedding Entities and Text with Distant Supervision”. In Proceed-

ings of the 3rd Workshop on Representation Learning for NLP, 2018.

• URL: https://slate.cse.ohio-state.edu/WikiSRS/

BMASS: Biomedical Analogic Similarity Dataset

• Analogical reasoning dataset derived from the Unified Medical Language Sys-

tem.

• Originating publication: D Newman-Griffis, A M Lai, and E Fosler-Lussier. “In-

sights into Analogy Completion from the Biomedical Domain.” In Proceedings

of the 16th Workshop on Biomedical Natural Language Processing (BioNLP),

2017.

• URL: https://slate.cse.ohio-state.edu/BMASS/
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Marco Turchi, and Karin Verspoor, editors. 2019. Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 1: Research Papers). Association for Com-
putational Linguistics, Florence, Italy.

Gemma Boleda. 2020. Distributional Semantics and Linguistic Theory. Annual Re-
view of Linguistics, 6(1):213–234.

294

https://doi.org/10.1093/jamia/ocy179
https://doi.org/10.1093/jamia/ocy179
http://dl.acm.org/citation.cfm?id=2391011
http://dl.acm.org/citation.cfm?id=2391011
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/pubmed/25745641{%}5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4346778
http://www.ncbi.nlm.nih.gov/pubmed/25745641{%}5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4346778
https://doi.org/10.1111/j.1525-1497.2001.00625.x
https://doi.org/10.1111/j.1525-1497.2001.00625.x
https://doi.org/1511.09249v1
https://doi.org/1511.09249v1
https://www.aclweb.org/anthology/W19-5200
https://www.aclweb.org/anthology/W19-5200
https://doi.org/10.1146/annurev-linguistics-011619-030303


Tomas Borovicka, Marcel Jirina Jr, Pavel Kordik, and Marcel Jirina. 2012. Select-
ing representative data sets. Advances in data mining knowledge discovery and
applications, pages 43–70.

Christopher R Bowie, Elizabeth W Twamley, Hannah Anderson, Brooke Halpern,
Thomas L Patterson, and Philip D Harvey. 2007. Self-assessment of functional
status in schizophrenia. Journal of psychiatric research, 41(12):1012–1018.

Rebecca T Brown, Kiya D Komaiko, Ying Shi, Kathy Z Fung, W John Boscardin,
Alvin Au-Yeung, Gary Tarasovsky, Riya Jacob, and Michael A Steinman. 2017.
Bringing functional status into a big data world: Validation of national Veterans
Affairs functional status data. PLOS ONE, 12(6):e0178726.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014. Multimodal Distributional
Semantics. Journal of Artificial Intelligence Research, 49(1):1–47.

John Bryden, Sebastian Funk, and Vincent A A Jansen. 2013. Word usage mirrors
community structure in the online social network Twitter. EPJ Data Science,
2(1):3.

Christian Buck, Kenneth Heafield, and Bas van Ooyen. 2014. N-gram Counts and Lan-
guage Models from the Common Crawl. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation ({LREC}’14), pages 3579–3584,
Reykjavik, Iceland. European Language Resources Association (ELRA).

Risa B Burns, Mark A Moskowitz, Arlene Ash, Robert L Kane, Michael D Finch,
and Sharon M Bak. 1992. Self-Report versus Medical Record Functional Status.
Medical Care, 30(5):MS85–MS95.

Jose Camacho-Collados and Mohammad Taher Pilehvar. 2018. From Word to Sense
Embeddings: A Survey on Vector Representations of Meaning. J. Artif. Int. Res.,
63(1):743–788.
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Jelena Jovanović and Ebrahim Bagheri. 2017. Semantic annotation in biomedicine:
The current landscape. Journal of Biomedical Semantics, 8(1):1–18.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Convolutional Neural Networks
for Discourse Compositionality. In Proceedings of the Workshop on Continuous
Vector Space Models and their Compositionality, pages 119–126, Sofia, Bulgaria.
Association for Computational Linguistics.

Fred Karlsson. 2007. Constraints on multiple center-embedding of clauses. Journal
of Linguistics, 43(2):365–392.

Jun’ichi Kazama, Takaki Makino, Yoshihiro Ohta, and Jun’ichi Tsujii. 2002. Tuning
support vector machines for biomedical named entity recognition. In Proceedings
of the {ACL}-02 Workshop on Natural Language Processing in the Biomedical Do-
main, pages 1–8, Phildadelphia, Pennsylvania, USA. Association for Computational
Linguistics.

Victoria L Keevil, Robert Luben, Shabina Hayat, Avan A Sayer, Nicholas J Wareham,
and Kay-Tee Khaw. 2018. Physical capability predicts mortality in late mid-life
as well as in old age: Findings from a large British cohort study. Archives of
Gerontology and Geriatrics, 74:77–82.

J. D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GENIA corpus - A semantically
annotated corpus for bio-textmining. Bioinformatics, 19(SUPPL. 1):180–182.

Joo-Kyung Kim and Marie-Catherine de Marneffe. 2013. Deriving Adjectival Scales
from Continuous Space Word Representations. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing, pages 1625–1630,
Seattle, Washington, USA. Association for Computational Linguistics.

Joo-Kyung Kim, Marie-Catherine de Marneffe, and Eric Fosler-Lussier. 2016a. Ad-
justing Word Embeddings with Semantic Intensity Orders. In Proceedings of the 1st
Workshop on Representation Learning for {NLP}, pages 62–69, Berlin, Germany.
Association for Computational Linguistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016b. Character-
aware Neural Language Models. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, AAAI’16, pages 2741–2749. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. In Proceedings of the International Conference on Learning Representations
(ICLR), pages 1–15.

308

https://doi.org/10.1016/j.jbi.2018.07.025
https://doi.org/10.1016/j.jbi.2018.07.025
https://doi.org/10.1186/s13326-017-0153-x
https://doi.org/10.1186/s13326-017-0153-x
https://www.aclweb.org/anthology/W13-3214
https://www.aclweb.org/anthology/W13-3214
https://doi.org/DOI: 10.1017/S0022226707004616
https://doi.org/10.3115/1118149.1118150
https://doi.org/10.3115/1118149.1118150
https://doi.org/10.1016/j.archger.2017.10.001
https://doi.org/10.1016/j.archger.2017.10.001
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://www.aclweb.org/anthology/D13-1169
https://www.aclweb.org/anthology/D13-1169
https://doi.org/10.18653/v1/W16-1607
https://doi.org/10.18653/v1/W16-1607
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://dl.acm.org/citation.cfm?id=3016100.3016285
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503


Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-Thought Vectors. In C Cortes,
N D Lawrence, D D Lee, M Sugiyama, and R Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 3294–3302. Curran Associates, Inc.

Richard Kittredge and John Lehrberger, editors. 1982. Sublanguage: Studies of lan-
guage in restricted semantic domains. Walter de Gruyter.
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