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Abstract

Exploration and analysis of potential data
sources is a significant challenge in the appli-
cation of NLP techniques to novel informa-
tion domains. We describe HARE, a system
for highlighting relevant information in docu-
ment collections to support ranking and triage,
which provides tools for post-processing and
qualitative analysis for model development
and tuning. We apply HARE to the use case
of narrative descriptions of mobility informa-
tion in clinical data, and demonstrate its utility
in comparing candidate embedding features.
We provide a web-based interface for annota-
tion visualization and document ranking, with
a modular backend to support interoperability
with existing annotation tools.

1 Introduction

As natural language processing techniques be-
come useful for an increasing number of new in-
formation domains, it is not always clear how best
to identify information of interest, or to evaluate
the output of automatic annotation tools. This
can be especially challenging when target data in
the form of long strings or narratives of complex
structure, e.g., in financial data (Fisher et al., 2016)
or clinical data (Rosenbloom et al., 2011).

We introduce HARE, a Highlighting Annotator
for Ranking and Exploration. HARE includes
two main components: a workflow for supervised
training of automated token-wise relevancy tag-
gers, and a web-based interface for visualizing and
analyzing automated tagging output. It is intended
to serve two main purposes: (1) triage of docu-
ments when analyzing new corpora for the pres-
ence of relevant information, and (2) interactive
analysis, post-processing, and comparison of out-
put from different annotation systems.

In this paper, we demonstrate an application
of HARE to information about individuals’ mo-

bility status, an important aspect of functioning
concerned with changing body position or loca-
tion. This is a relatively new type of health-related
narrative information with largely uncharacterized
linguistic structure, and high relevance to overall
health outcomes and work disability programs. In
experiments on a corpus of 400 clinical records,
we show that with minimal tuning, our tagger is
able to produce a high-quality ranking of docu-
ments based on their relevance to mobility, and to
capture mobility-likely document segments with
high fidelity. We further demonstrate the use of
post-processing and qualitative analytic compo-
nents of our system to compare the impact of dif-
ferent feature sets and tune processing settings to
improve relevance tagging quality.

2 Related work

Corpus annotation tools are plentiful in NLP re-
search: brat (Stenetorp et al., 2012) and Know-
tator (Ogren, 2006) being two heavily used ex-
amples among many. However, the primary pur-
pose of these tools is to streamline manual anno-
tation by experts, and to support review and revi-
sion of manual annotations. Some tools, including
brat, support automated pre-annotation, but analy-
sis of these annotations and corpus exploration is
not commonly included. Other tools, such as Sci-
KnowMine,1 use automated techniques for triage,
but for routing to experts for curation rather than
ranking and model analysis. Document ranking
and search engines such as Apache Lucene,2 by
contrast, can be overly fully-featured for early-
stage analysis of new datasets, and do not directly
offer tools for annotation and post-processing.

Early efforts towards extracting mobility infor-
mation have illustrated that it is often syntactically

1https://www.isi.edu/projects/
sciknowmine/overview

2https://lucene.apache.org/



SpaCy WordPiece
Num documents 400

Avg tokens per doc 537 655
Avg mobility tokens per doc 97 112

Avg mobility segments per doc 9.2

Table 1: Statistics for dataset of mobility information,
using SpaCy and WordPiece tokenization.

and semantically complex, and difficult to ex-
tract reliably (Newman-Griffis and Zirikly, 2018;
Newman-Griffis et al., 2019). Some characteriza-
tion of mobility-related terms has been performed
as part of larger work on functioning (Skube et al.,
2018), but a lack of standardized terminologies
limits the utility of vocabulary-driven clinical NLP
tools such as CLAMP (Soysal et al., 2018) or
cTAKES (Savova et al., 2010). Thus, it forms a
useful test case for HARE.

3 System Description

Our system has three stages for analyzing docu-
ment sets, illustrated in Figure 1. First, data anno-
tated by experts for token relevance can be used to
train relevance tagging models, and trained mod-
els can be applied to produce relevance scores on
new documents (Section 3.1). Second, we pro-
vide configurable post-processing tools for clean-
ing and smoothing relevance scores (Section 3.2).
Finally, our system includes interfaces for review-
ing detailed relevance output, ranking documents
by their relevance to the target criterion, and an-
alyzing qualitative outcomes of relevance scoring
output (Sections 3.3-3.5); all of these interfaces al-
low interactive re-configuration of post-processing
settings and switching between output relevance
scores from different models for comparison.

For our experiments on mobility information,
we use an extended version of the dataset de-
scribed by Thieu et al. (2017), which consists of
400 English-language Physical Therapy initial as-
sessment and reassessment notes from the Reha-
bilitation Medicine Department of the NIH Clin-
ical Center. These text documents have been an-
notated at the token level for descriptions and as-
sessments of patient mobility status. Further in-
formation on this dataset is given in Table 1. We
use ten-fold cross validation for our experiments,
splitting into folds at the document level.

3.1 Relevance tagging workflow
All hyperparameters discussed in this section were
tuned on held-out development data in cross-
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Figure 1: HARE workflow for working with a set of
documents; outlined boxes indicate automated compo-
nents, and gray boxes signify user interfaces.

validation experiments. We report the best settings
here, and provide full comparison of hyperparam-
eter settings in Appendix A.

3.1.1 Preprocessing
Different domains exhibit different patterns in to-
ken and sentence structure that affect preprocess-
ing. In clinical text, tokenization is not a consen-
sus issue, and a variety of different tokenizers are
used regularly (Savova et al., 2010; Soysal et al.,
2018). As mobility information is relatively un-
explored, we relied on general-purpose tokeniza-
tion with spaCy (Honnibal and Montani, 2017) as
our default tokenizer, and WordPiece (Wu et al.,
2016) for experiments using BERT. We did not ap-
ply sentence segmentation, as clinical toolkits of-
ten produced short segments that interrupted mo-
bility information in our experiments.

3.1.2 Feature extraction
Our system supports feature extraction for indi-
vidual tokens in input documents using both static
and contextualized word embeddings.

Static embeddings Using static (i.e., non-
contextualized) embeddings, we calculate input
features for each token as the mean embedding of
the token and 10 words on each side (truncated
at sentence/line breaks). We used FastText (Bo-
janowski et al., 2017) embeddings trained on a 10-
year collection of physical and occupational ther-
apy records from the NIH Clinical Center.

ELMo (Peters et al., 2018) ELMo features are
calculated for each token by taking the hidden
states of the two bLSTM layers and the token
layer, multiplying each vector by learned weights,
and summing to produce a final embedding. Com-
bination weights are trained jointly with the token
annotation model. We used a 1024-dimensional
ELMo model pretrained on PubMed data3 for our

3https://allennlp.org/elmo



Figure 2: Precision, recall, and F-2 when varying bi-
narization threshold from 0 to 1, using ELMo embed-
dings. The threshold corresponding to the best F-2 is
marked with a dotted vertical line.

mobility experiments.
BERT (Devlin et al., 2019) For BERT features,

we take the hidden states of the final k layers of
the model; as with ELMo embeddings, these out-
puts are then multiplied by a learned weight vec-
tor, and the weighted layers are summed to cre-
ate the final embedding vectors.4 We used the
768-dimensional clinicalBERT (Alsentzer et al.,
2019) model5 in our experiments, extracting fea-
tures from the last 3 layers.

3.1.3 Automated token-level annotation
We model the annotation process of assigning
a relevance score for each token using a feed-
forward deep neural network that takes embedding
features as input and produces a binomial softmax
distribution as output. For mobility information,
we used a DNN with three 300-dimensional hid-
den layers, relu activation, and 60% dropout.

As shown in Table 1, our mobility dataset is
considerably imbalanced between relevant and ir-
relevant tokens. To adjust for this balance, for
each epoch of training, we used all of the rele-
vant tokens in the training documents, and sam-
pled irrelevant tokens at a 75% ratio to produce a
more balanced training set; negative points were
re-sampled at each epoch. As token predictions
are conditionally independent of one another given
the embedding features, we did not maintain any
sequence in the samples drawn. Relevant samples
were weighted at a ratio of 2:1 during training.

After each epoch, we evaluate the model on all
tokens in a held-out 10% of the documents, and
calculate F-2 score (preferring recall over preci-
sion) using 0.5 as the binarization threshold of
model output. We use an early stopping thresh-
old of 1e-05 on this F-2 score, with a patience of 5

4Note that as BERT is constrained to use WordPiece tok-
enization, it may use slightly longer token sequences than the
other methods.

5https://github.com/EmilyAlsentzer/
clinicalBERT

(a) No collapsing

(b) Collapse one blank

Figure 3: Collapsing adjacent segments illustration.

epochs and a maximum of 50 epochs of training.

3.2 Post-processing methods

Given a set of token-level relevance annotations,
HARE provides three post-processing techniques
for analyzing and improving annotation results.

Decision thresholding The threshold for bina-
rizing token relevance scores is configurable be-
tween 0 and 1, to support more or less conservative
interpretation of model output; this is akin to ex-
ploring the precision/recall curve. Figure 2 shows
precision, recall, and F-2 for different threshold-
ing values from our mobility experiments, using
scores from ELMo embeddings.

Collapsing adjacent segments We consider
any contiguous sequence of tokens with scores at
or above the binarization threshold to be a relevant
segment. As shown in Figure 3, multiple segments
may be interrupted by irrelevant tokens such as
punctuation, or by noisy relevance scores falling
below the binarization threshold. As multiple ad-
jacent segments may inflate a document’s overall
relevance, our system includes a setting to collapse
any adjacent segments that are separated by k or
fewer tokens into a single segment.

Viterbi smoothing By modeling token-level
decisions as conditionally independent of one an-
other given the input features, we avoid assump-
tions of strict segment bounds, but introduce some
noisy output, as shown in Figure 4. To reduce
some of this noise, we include an optional smooth-

(a) Without smoothing

(b) With smoothing

Figure 4: Illustration of Viterbi smoothing.



Figure 5: Annotation viewer interface.

ing component based on the Viterbi algorithm.
We model the “relevant”/“irrelevant” state se-

quence discriminatively, using annotation model
outputs as state probabilities for each timestep,
and calculate the binary transition probability ma-
trix by counting transitions in the training data.
We use these estimates to decode the most likely
relevance state sequence R for a tokenized line T
in an input document, along with the correspond-
ing path probability matrixW , whereWj,i denotes
the likelihood of being in state j at time i given
ri−1 and ti. In order to produce continuous scores
for each token, we then backtrace through R and
assign score si to token ti as the conditional prob-
ability that ri is “relevant”, given ri−1. Let Qj,i be
the likelihood of transitioning from state Ri−1 to
j, conditioned on Ti, as:

Qj,i =
Wj,i

WRi−1,i−1
(1)

The final conditional probability si is calculated
by normalizing over possible states at time i:

si =
Q1,i

Q0,i +Q1,i
(2)

These smoothed scores can then be binarized us-
ing the configurable decision threshold.

3.3 Annotation viewer
Annotations on any individual document can be
viewed using a web-based interface, shown in Fig-
ure 5. All tokens with scores at or above the de-
cision threshold are highlighted in yellow, with
each contiguous segment shown in a single high-
light. Configuration settings for post-processing
methods are provided, and update the displayed
annotations when changed. On click, each token
will display the score assigned to it by the anno-
tation model after post-processing. If the docu-
ment being viewed is labeled with gold annota-
tions, these are shown in bold red text. Addition-

Figure 6: Ranking interface.

ally, document-level summary statistics and eval-
uation measures, with current post-processing, are
displayed next to the annotations.

3.4 Document set ranking

3.4.1 Ranking methods
Relevance scoring methods are highly task-
dependent, and may reflect different priorities
such as information density or diversity of infor-
mation returned. In this system, we provide three
general-purpose relevance scorers, each of which
operates after any post-processing.

Segments+Tokens Documents are scored by
multiplying their number of relevant segments by
a large constant and adding the number of relevant
tokens to break any ties by segment count. As rel-
evant information may be sparse, no normalization
by document length is used.

SumScores Documents are scored by summing
the continuous relevance scores assigned to all of
their tokens. As with the Segments+Tokens scorer,
no adjustment is made for document length.

Density Document scores are the ratio of bina-
rized relevant tokens to total number of tokens.

The same scorer can be used to rank gold anno-
tations and model annotations, or different scorers
can be chosen. Ranking quality is evaluated using
Spearman’s ρ, which ranges from -1 (exact oppo-
site ranking) to +1 (same ranking), with 0 indicat-
ing no correlation between rankings. We use Seg-
ments+Tokens as default; a comparison of ranking
methods is in Appendix B.

3.4.2 Ranking interface
Our system also includes a web-based ranking in-
terface, which displays the scores and correspond-
ing ranking assigned to a set of annotated doc-
uments, as shown in Figure 6. For ease of vi-
sual distinction, we include colorization of rows
based on configurable score thresholds. Rank-
ing methods used for model scores and gold an-



Embeddings Smoothing Annotation Ranking
Pr Rec F-2 ρ

Static No 59.0 94.7 84.4 0.862
Yes 60.5 93.7 84.3 0.899

ELMo No 60.2 94.1 84.4 0.771
Yes 66.5 91.4 84.8 0.886

BERT No 55.3 93.8 82.2 0.689
Yes 62.3 90.8 84.3 0.844

Table 2: Annotation and ranking evaluation results on
mobility documents, using three embedding sources.
Results are given with and without Viterbi smooth-
ing, using binarization threshold=0.5 and no collaps-
ing of adjacent segments. Pr=precision, Rec=recall,
ρ=Spearman’s ρ Pr/Rec/F2 are macro-averaged over
folds, ρ is over all test predictions.

notations (when present) can be adjusted inde-
pendently, and our post-processing methods (Sec-
tion 3.2) can also be adjusted to affect ranking.

3.5 Qualitative analysis tools

We provide a set of three tools for performing
qualitative analysis of annotation outcomes. The
first measures lexicalization of each unique token
in the dataset with respect to relevance score, by
averaging the assigned relevance score (with or
without smoothing) for each instance of each to-
ken. Tokens with a frequency below a config-
urable minimum threshold are excluded.

Our other tools analyze the aggregate relevance
score patterns in an annotation set. For labeled
data, as shown in Figure 2, we provide a visual-
ization of precision, recall, and F-2 when vary-
ing the binarization threshold, including identify-
ing the optimal threshold with respect to F-2. We
also include a label-agnostic analysis of patterns in
output relevance scores, illustrated in Figure 7, as
a way to evaluate the confidence of the annotator.
Both of these tools are provided at the level of an
annotation set and individual documents.

3.6 Implementation details

Our automated annotation, post-processing, and
document ranking algorithms are implemented
in Python, using the NumPy and Tensorflow li-
braries. Our demonstration interface is imple-
mented using the Flask library, with all backend
logic handled separately in order to support mod-
ularity of the user interface.

4 Results on mobility

Table 2 shows the token-level annotation and doc-
ument ranking results for our experiments on mo-

Figure 7: Distribution of token relevance scores on mo-
bility data: (a) word2vec, (b) ELMo, and (c) BERT.

bility information. Static and contextualized em-
bedding models performed equivalently well on
token-level annotations; BERT embeddings actu-
ally underperformed static embeddings and ELMo
on both precision and recall. Interestingly, static
embeddings yielded the best ranking performance
of ρ = 0.862, compared to 0.771 with ELMo
and 0.689 with BERT. Viterbi smoothing makes a
minimal difference in token-level tagging, but in-
creases ranking performance considerably, partic-
ularly for contextualized models. It also produces
a qualitative improvement by trimming out extra-
neous tokens at the start of several segments, as
reflected by the improvements in precision.

The distribution of token scores from each
model (Figure 7) shows that all three embedding
models yielded a roughly bimodal distribution,
with most scores in the ranges [0, 0.2] or [0.7, 1.0].

5 Discussion

Though our system is designed to address differ-
ent needs from other NLP annotation tools, com-
ponents such as annotation viewing are also ad-
dressed in other established systems. Our imple-
mentation decouples backend analysis from the
front-end interface; in future work, we plan to add
support for integrating our annotation and ranking
systems into existing platforms such as brat. Our
tool can also easily be extended to both multi-class
and multilabel applications; for a detailed discus-
sion, see Appendix C.

In terms of document ranking methods, it may
be preferred to rank documents jointly instead of
independently, in order to account for challenges
such as duplication of information (common in
clinical data; Taggart et al. (2015)) or subtopics.
However, these decisions are highly task-specific,
and are an important focus for designing ranking
utility within specific domains.



6 Conclusions

We introduced HARE, a supervised system for
highlighting relevant information and interactive
exploration of model outcomes. We demonstrated
its utility in experiments with clinical records an-
notated for narrative descriptions of mobility sta-
tus. We also provided qualitative analytic tools
for understanding the outcomes of different an-
notation models. In future work, we plan to
extend these analytic tools to provide rationales
for individual token-level decisions. Additionally,
given the clear importance of contextual informa-
tion in token-level annotations, the static transition
probabilities used in our Viterbi smoothing tech-
nique are likely to degrade its effect on the out-
put. Adding support for dynamic, contextualized
estimations of transition probabilities will provide
more fine-grained modeling of relevance, as well
as more powerful options for post-processing.

Our system is available online at https://
github.com/OSU-slatelab/HARE/. This
research was supported by the Intramural Re-
search Program of the National Institutes of Health
and the US Social Security Administration.
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A Hyperparameters

This section describes each of the settings evalu-
ated for the various hyperparameters used in our
experiments on mobility information. We first ex-
perimented with different pretrained embeddings
used for each of our embedding model options; re-
sults are shown in Figure 8.

Static embedding model (Figure 8a) We evalu-
ated three commonly used benchmark embedding
sets: word2vec skipgram (Mikolov et al., 2013)
using GoogleNews,6 FastText skipgram with sub-
word information on WikiNews,7 and GloVe (Pen-
nington et al., 2014) on 840 billion tokens of
Common Crawl.8 Additionally, we experimented
with two in-domain embedding sets, trained on
10 years of Physical Therapy and Occupational
Therapy records from the NIH Clinical Center (re-
ferred to as “PT/OT”), using word2vec skipgram
and FastText skipgram. word2vec GoogleNews
embeddings produced the best dev F-2.

ELMo model (Figure 8b) We experimented
with three pretrained ELMo models:9 the “Orig-
inal” model trained on the 1 Billion Word Bench-
mark, the “Original (5.5B)” model trained with
the same settings on Wikipedia and machine trans-
lation data, and a model trained on PubMed ab-
stracts. The Original (5.5B) model produced the
best dev F-2.

BERT model (Figure 8c) We experimented
with three pretrained BERT models: BERT-
Base,10 BioBERT (Lee et al., 2019) (v1.1) trained
on 1 million PubMed abstracts,11 and clinical-
BERT (Alsentzer et al., 2019) trained on MIMIC
data.12 We use uncased versions of BERT-Base
and clinicalBERT, as casing is not a reliable sig-
nal in clinical data; BioBERT is only available in
a cased version. clinicalBERT produced the best
dev F-2.

Once the best embedding models for each
method were identified, we experimented with
network and training hyperparameters, with re-

6http://google.com/archive/p/word2vec/
7https://fasttext.cc/docs/en/
8http://nlp.stanford.edu/projects/

glove/
9All downloaded from https://allennlp.org/

elmo
10https://github.com/google-research/

bert
11https://github.com/naver/

biobert-pretrained
12https://github.com/EmilyAlsentzer/

clinicalBERT

sults shown in Figure 9.
Irrelevant:relevant sampling ratio (Figure 9a)

We experimented with the ratio of irrelevant to
relevant samples drawn for each training epoch
in 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3. A ratio of 0.75
gave the best dev F-2.

Positive fraction (Figure 9b) We varied the
fraction of total dataset positive samples drawn for
each training epoch from 10% to 100% at intervals
of 10%. The best dev F-2 was produced by using
all positive samples in each epoch.

Dropout rate (Figure 9c) We experimented
with an input dropout rate from 0% to 90%, at
intervals of 10%; the best results were produced
with a 60% dropout rate.

Weighting scheme (Figure 9d) Given the im-
balance of relevant to irrelevant samples in our
dataset, we experimented with weighting relevant
samples by a factor of 1 (equal weight), 2, 3, 4,
and 5. A weighting of 2:1 produced the best dev
F-2.

Hidden layer configuration (Figure 9e) We ex-
perimented with the configuration of our DNN
model, using hidden layer size ∈ {10, 100, 300}
and number of layers from 1 to 3. The best dev
F-2 results were achieved using 3 hidden layers of
size 300.

B Ranking methods

A comparison of ranking methods used for model
and gold scores is provided in Figure ??. We
found that for our experiments, Segments+Tokens
and SumScores correlated fairly well with one an-
other, but Density, due to its normalization for
document length, works best when used to rank
both model and gold scores. SumScores provided
the best overall ranking correlation; however, we
use Segments+Tokens as the default setting for our
system for its clear interpretation.

C Extending to multi-class/multilabel
applications

Our experiments focused on binary relevance with
respect to mobility information. However, our
system can be fairly straightfowardly extended to
both multi-label (i.e., multiple relevance criteria)
and multi-class (e.g., NER) settings.

For multi-label settings, such as looking for ev-
idence of limitations in either mobility or inter-
personal interactions, the only requirement is hav-
ing data that are annotated for each relevance cri-



terion. These can be the same data with mul-
tiple annotations, or different datasets; in either
case, binary relevance annotators can be trained
independently for each specific relevance crite-
rion. Our post-processing components such as
Viterbi smoothing can then be applied indepen-
dently to each set of relevance annotations as de-
sired. The primary extension required would be
to the visualization interface, to support display
of multiple (potentially overlapping) annotations.
Alternatively, our modular handling of relevance
annotations could be redirected to another visual-
ization interface with existing support for multiple
annotations, such as brat.

Extending to multi-class settings would require
fairly minimal updates to both the interface and
our relevance annotation model. Our model is
trained using two-class cross (relevant and irrele-
vant) cross-entropy; this could easily be extended
to n-ary cross entropy for any desired number of
classes, and trained with token-level data anno-
tated with the appropriate classes. In terms of vi-
sualization and analysis, the two modifications re-
quired would be adding differentiating displays for
the different classes annotated (e.g., different col-
ors), and updating the displayed evaluation statis-
tics to micro/macro evaluations over the multiple
classes. Qualitative analysis features such as rele-
vance score distribution and lexicalization are al-
ready dependent only on the scores assigned to the
“relevant” class, and could be presented for each
class independently.



(a) Static word embedding models (b) ELMo embedding models (c) BERT embedding models

Figure 8: Embedding model selection results, by F-2 on cross validation development set. Default settings for
other hyperparameters were: relevant:irrelevant ratio of 1:1, sampling 50% of positive samples per epoch, dropout
of 0.5, equal class weights, and DNN configuration one 100-dimensional hidden layer.

(a) Irrelevant:relevant sampling ratio in training (b) Fraction of relevant samples per epoch

(c) Dropout (d) Weighting scheme (Relevant:Irrelevant)

(e) Configurations of DNN token annotator; NxM indi-
cates N layers of dimensionality M ; M1/M2 indicates
that the first hidden layer is of dimensionality M1, the
second of M2.

Figure 9: Hyperparameter tuning results, measuring F-2 on development set in cross-validation experiments. For
each embedding method, the best model (shown in Figure 8) was used. All other hyperparameter setting defaults
were as described in Figure 8. The best-performing setting for each hyperparameter, determined by the mean Dev
F-2 across all three embedding methods, is indicated with a vertical dashed line.



(a) Static (no smoothing) (b) Static (with smoothing)

(c) ELMo (no smoothing) (d) ELMo (with smoothing)

(e) BERT (no smoothing) (f) BERT (with smoothing)

Figure 10: Comparison of ranking methods used for model scores and gold scores. Scores given are Spearman’s
rank correlation coefficient (ρ). System outputs using all three embedding methods are compared, both with and
without Viterbi smoothing.


